CASE-BASED LESSON BUILDING FOR TUTORS IN VIRTUAL EDUCATION ENVIRONMENTS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By
Patrick Michael Regan
In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

January 2002

Fargo, North Dakota

ABSTRACT

Regan, Patrick Michael, M.S., Department of Computer Science, College of Science and Mathematics, North Dakota State University, February 2002. Case-based Lesson Building for Tutors in Virtual Education Environments. Major Professor: Dr. Brian Slator.

Virtual education environments are gaining popularity as tools to enhance student learning. These environments are often used to allow students to experience situations that would be difficult, costly, or impossible in the physical world. North Dakota State University provides students with environments to enhance their understanding of geology (Planet OIT), cellular biology (V-Cell), retailing (DollarBay), and history (Blackwood). In order to maximize the learning potential of each individual student, an ideal environment needs to provide customized lessons to that student based on his or her individual performance. One method used to address this requirement is the use of case-based reasoning software. This software is used to monitor student performance, track progress throughout an environment, compare the student to other students in the same environment, and create customized tutor dialogs to communicate this information to the student in the form of individual tutor lessons. An example of case-based lesson building software that meets the above requirements can be observed in the current DollarBay retailing environment.

ACKNOWLEDGMENTS

There have been many individuals who have helped me along the road to completion of my thesis. Without the help of my major advisor, Dr. Brian Slator, however, I would have never reached this closing point in my pursuit for this degree. As I have gotten to know Dr. Slator over the last few years, I have become very impressed with his willingness to roll up his sleeves and dig into the issues at hand with the students who are working for him. I have been fortunate enough to begin my research under him at a time where many years of his hard work have paid off and others are beginning to share his vision of how technology can make education more interactive, interesting, and entertaining. The excitement and creativity brought on by all of this positive energy has greatly enhanced my experience at North Dakota State University.

I would like to thank Dr. Ken Nygard for his support, suggestions, and guidance in various matters over the years. His thoughtfulness has proven to further enhance my overall experience as I progressed towards completion of my degree requirements. I would also like to thank Dr. Ahmed Kamel and Dr. Phil McClean for volunteering to serve on my supervisory committee and share their insight with me. Finally, I would like to thank James Walsh for the legacy prototype code that provided a foundation for my own work, Brad Vender for his expertise in LambdaMOO programming, and John Bauer and John Opgrande for helping me to become a better programmer.

I would like to close by thanking my wife and parents for their support over the last two years. Their respect and encouragement has been instrumental in empowering me to follow my heart and pursue my dreams.
TABLE OF CONTENTS
iiiABSTRACT

ivACKNOWLEDGMENTS

viiiLIST OF TABLES

ixLIST OF FIGURES

11. INTRODUCTION

21.1 Statement of the Problem

42. BACKGROUND

42.1 Client/Server Architecture

62.2 Overview of LambdaMOO

92.3 Object Oriented Programming

102.4 Case-based Reasoning

123. LITERATURE REVIEW

123.1 Principles of Educational Simulation Environments

143.2 Virtual Educational Environments at NDSU

143.2.1 Virtual Cell

153.2.2 Planet OIT

153.2.3 Blackwood

153.2.4 DollarBay

163.2.5 Intelligent Tutoring in Virtual Environments

163.2.5.1 Deductive Tutoring

173.2.5.2 Rule-based Tutoring

183.2.5.3 Case-based Tutoring

194. APPROACH

194.1. Architecture of Case-based Lesson Building System

244.2 Prior Work

254.3 Weekly Case Update

254.3.1 Retrieve an Active Case

254.3.2 Create a New Active Case

264.3.3 Update an Active Case

274.3.3.1 Compute Product Focus

274.3.3.2 Compute Restock Plan

284.3.3.3 Compute Ad Cost

284.3.3.4 Compute Ad Target

294.3.3.5 Compute Staff Level

294.3.3.6 Compute Cash Reserves

294.3.3.7 Compute Price Margin

304.3.3.8 Compute Liability

304.3.4 Update Case Library

314.4 Determining Case Similarity

324.4.1 Compute Similarity Value

334.4.2 Prototypical Case Similarity

354.4.3 Active Case Similarity

364.4.4 Concrete Active Case Similarity

374.4.4.1 Number of Product Families Stocked

384.4.4.2 Product Families

384.4.4.3 Number of Products Stocked

384.4.4.4 Average Markup

394.4.4.5 Cash

394.4.4.6 Player Age

404.4.4.7 Items Sold Last Week

404.4.4.8 Sales Lost for Not Stocked

404.4.4.9 Employee Type

414.4.4.10 Ad Type

414.4.4.11 Net

424.5 Sending a Tutor

424.5.1 Schedule Tutor Visits

434.5.2 Send Tutor

454.5.3 Build Active Message

454.5.4 Build Prototypical Message

494.5.5 Build Historical Message

505. EVALUATION

505.1 Case Library Construction

545.2 Governors School Tournament

586. CONCLUSIONS AND FUTURE WORK

60REFERENCES

63APPENDIX A: SOURCE CODE

95APPENDIX B: CASE LIBRARY CONSTRUCTION INSTRUCTIONS

97APPENDIX C: CASE LIBRARY CONSTRUCTION MATCH RESULTS

104APPENDIX D: CASE LIBRARY CONSTRUCTION PLAYER NARRATIVES

132APPENDIX D: STUDENT TOURNAMENT DOCUMENTATION

LIST OF TABLES
Table
Page
27Table 4.1 – Case Similarity Measure Values

46Table 4.2 – Prototypical Case Types and General Messages

48Table 4.3 – Specific Prototypical Case Tutor Messages

51Table 5.1 – Specific Instructions for Case Library Construction Groups

53Table 5.2 – Prototypical Families of Player Case Library Matches

54Table 5.3 – Results of Governor School Tournament with no Tutoring

56Table 5.4 – Results of Governor School Tournament with Tutoring

57Table 5.5 – Comparison of Governor School Tournaments

LIST OF FIGURES

Figure
Page
6Figure 2.1 – DollarBay Store Interior

44Figure 4.1 – Sample Tutor Message

1. INTRODUCTION

The traditional teaching environment is usually thought to be that of a classroom: a single teacher giving lectures to a group of students who are expected to use their notes and textbook to prepare for periodic examinations and demonstrate that they have learned. Students are generally limited in their learning to that which is presented to them during lecture or what they read in their textbook. Due to the number of students in a single class, teachers are often limited to evaluating a student’s progress based on the “correctness” of any homework and examinations that the student submits. Typically, all students are forced to cover the same material at the same speed as their peers and may or may not have each of their specific questions and/or needs regarding the material covered at some point. Technology provides an alternative to this scenario.

One of the ways technology can be used to supplement learning is through the construction of virtual education environments to simulate scenarios that may be difficult for students to experience in the physical world. Typically, these environments are created in the logic of a programming language and use an interface to allow the student to interact with the environment. Using the Internet, students can access these worlds remotely, be it in a classroom or in the solitude of their own dwelling.

At North Dakota State University (NDSU), the World Wide Web Instructional Committee (WWWIC) is tasked with the responsibility of developing virtual education environments to assist in the education and growth of students. These environments currently range from a virtual cell for the study of plant and animal biology, a virtual planet for geological exploration, a virtual retailing environment, a virtual old western town for historical information, and a virtual toolset for the study of archeological artifacts. Some of the key factors that lead to success of these environments at NDSU are the use of graduate and undergraduate students in the development process, the use of the environments in actual classes, and the application of knowledge from one environment to the others.

One of the major goals of the WWWIC is to provide tutoring agents to communicate “expert stories” to students as they progress through the environment. These tutors need to be unintrusive and proactive. They should monitor the student and send advice on an “as needed” basis while being careful to never insist upon or block any course of action [Slator et al. 99].

1.1 Statement of the Problem

Although several of the virtual education environments at NDSU provided some basic tutoring functionality to students, none had implemented a completely functional case-based system. Planet OIT has proven successful at implementing diagnostic tutoring agents. DollarBay had a partial implementation of a case-based system, minus the functionality to provide messages to students participating via the Graphical User Interface. However, there was nothing in place anywhere to provide students expertise in the form of cases and still be complete enough to be transferred to other environments with minimal coding required.

In order to fulfill these requirements, a case-based tutoring system was implemented in DollarBay. This system provides complete analysis of student behavior based on selected attributes and a message delivery mechanism. It is complete enough to enable transfer of its core between environments. The only changes to the system that will be required upon transfer to a new environment will be the selection and analysis of the new attributes that are important to that specific environment.

This paper describes the design and functionality of the case-base tutoring system implemented in DollarBay. This system provides the means to generate personalized lessons for each student participating in the DollarBay environment. In addition, the current system provides a framework that may be used to implement similar functionality in the other virtual education environments at NDSU with a minimum of coding.

2. BACKGROUND

This section reviews the background information necessary to understand the material presented in this paper. The discussion begins with an explanation of the client/server architecture and the web, progresses to explain the LambdaMOO programming language used for implementation of the case-based tutor system, moves on to the concepts of object-oriented design, and concludes with an explanation of case-based reasoning.

2.1 Client/Server Architecture

The DollarBay simulation is based upon a client/server paradigm. What this means is that one application program waits passively for another application to initiate communication. The application that initiates contact is known as the client, while the application that passively waits is the server [Comer 99]. A server may handle several clients at the same time, allowing interaction between students in the environment.

The server side of DollarBay consists of a server program and a database. The server program is written in C/C++ and currently operates on a FreeBSD equipped machine. It is responsible for managing network connections, maintaining queues of commands, controlling access to the database, and execution of additional programs written in the MOO programming language [Curtis 97]. It is permanently connected to the Internet and allows other connected users to connect at any time, from any location, to the DollarBay environment.

The database for DollarBay is implemented in LambdaMOO. LambdaMOO is a multi-user, programmable, interactive system that is well suited to the construction of text-based adventure games, conferencing systems, and other collaborative software [Curtis 97]. The database contains representations of all of the objects in the DollarBay environment, including the MOO programs necessary to give the objects their specific behavior [Zelenak 99].

On the client side, the student interacts in the DollarBay environment by using a graphical user interface (GUI). The GUI window is generated by a Java applet and it serves as the connection to the LambdaMOO server. It handles the sending, receiving, and displaying of information about the DollarBay environment. It allows the student to interact with the environment by pointing, clicking, and selecting objects as well as typing text. It is through the GUI that a student moves about DollarBay and operates a retail store. Figure 2.1 on the following page shows a picture of a typical store interior in DollarBay.
[image: image1.png]
Figure 2.1 – DollarBay Store Interior
2.2 Overview of LambdaMOO

MOO is an abbreviation for a Multi User Dungeon Object Oriented or Multiuse Object Oriented system. It is a text based virtual reality that is permanently connected to the Internet and housed on a server. The first MOO, Lambda MOO, was developed at Xerox Palo Alto Research Center (PARC) by Pavel Curtis [Zelenak 99]. It was designed to be a network accessible, programmable, interactive, multi-user system that is well suited to the construction of text-based collaborative software most commonly used as multi-participant low bandwidth virtual reality [Curtis 97]. It is a small, simple language that is designed to be easy to learn and supports expressions, looping, control structures, and built-in functions. It is this set of attributes that make LambdaMOO ideal for creating educational worlds such as DollarBay.

LambdaMOO models virtual reality by representing virtual world entities (tutors, cases, stores, players, etc) as objects. It supports other value types as well (integers, strings, etc) but the objects are the backbone of any LambdaMOO database [Zelenak 99]. Each object is composed of three parts that define its behavior: attributes, properties, and verbs.

There are three attributes for each individual object. The first is a flag specifying if the object is a player, the second attribute contains the parent of the object, and the third lists the objects that are children of the object. These attributes allow objects to be classed in a general hierarchy and allow sharing of behavior.

A property is used to store an arbitrary MOO value. Each LambdaMOO object has eight built in properties: name, owner, location, contents, programmer, wizard, readable, writable, and fertile. Name identifies the object in printed messages. Owner identifies the object that has owner rights to the object. Location and contents describe the hierarchy of containment in the virtual environment. Wizard and programmer control permission to certain facilities for player objects. Readable and writable are flags that allow players to see a list of the properties and verbs on the object and add/delete those properties and verbs. Fertile specifies if players other than the owner can create new objects with the current object as a parent. In addition to the eight built in properties, objects may obtain additional properties via inheritance or player definition [Curtis 97].

Verbs are LambdaMOO programs associated with a particular object. Each verb usually implements commands that a player may type, but may also be used within the code and not correlate to any particular player command. There are flags allowing players to read, write, execute, and debug verbs.

In addition to the functionality described above, LambdaMOO also includes a built in command parser. It is designed to receive commands from a client program and segment them into one of the following forms [Zelenak 99]:

· Verb

· Verb

direct object

· Verb

direct object

preposition

indirect object

Anytime the command parser is invoked, the server tries to format the command into the third form. The first word is always taken to be a verb. The server then tries to find a preposition in the command that matches an entry in its built-in list of prepositions. If the parser finds one, it considers the words between it and the verb to be the direct object and the words after to be the indirect object. After identifying the form of the command, the parser may then proceed to execute it using one of the build-in commands or by looking up the MOO objects representing the direct and indirect objects and then executing the command [Curtis 97].

2.3 Object Oriented Programming

LambdaMOO is an object-oriented language. What does this mean? Quite simply, an object-oriented language is a programming language that implements design solutions by focusing on entities (objects) and operations on those objects [Headington 97]. Object-oriented languages approach a problem by modeling entities from the real world as objects and then defining relationships among the objects [Stansifer 95].

Object-oriented programming has rapidly moved to replace structured programming as the dominant approach to software development. This has happened for two main reasons: objects are good abstractions of real-world entities making them ideal for modeling complex systems and objects can yield suitable components for fostering modularity and re-use for building quality, complex applications [Bouzeghoub 97]. These strengths provide valuable insight as to why object-orientation has become a standard programming practice.

Object-orientation does have weaknesses as well. One weakness is that there is often confusion and controversy over key concepts such as encapsulation, inheritance, and polymorphism [Bouzeghoub 97]. There is also a lack of complete theory, making object-orientation more of an engineering approach than a science. Object-orientation is useful for solving problems in domains such as user interfaces, programming, modeling, re-use, and cooperation [Zelenak 99].

2.4 Case-based Reasoning

“Case-based reasoning means reasoning based on previous cases or experiences” [Kolodner &Leake 96]. It is a process where the primary knowledge of a system is drawn from stored cases representing specific episodes and a solution is proposed based on the information contained in the previous episodes. The logic behind this is simple: similar problems often have similar solutions and the types of problems one encounters over time tend to repeat.

One approach of case-based reasoning is case-based interpretation. The purpose of this approach is to form a judgment about a situation based on cases that are already classified. One example of this approach is the legal system, where decisions in certain legal cases set a precedent for similar cases in the future. There are four steps used in the interpretive process [Leake 96]:

· Perform an assessment of the current situation and determine relevant features

· Retrieve a relevant prior case set

· Compare the case set to the current situation

· Save the interpretation of the current situation as a new case

This is the approach that is used in case-based tutoring.

In order to perform case-based tutoring, one must understand the definition of a case. A case is an example of a past problem and its solution. The solutions may be collected from human experts via knowledge engineering or may reflect the results of previous search based successes or failures [Luger 98]. A case may be as simple as a relational tuple, or may be as complex as a proof tree. In DollarBay, cases are sets of abstract attributes that represent the status of a player’s business strategy.

3. LITERATURE REVIEW

Case-based tutoring is intended to enhance the effectiveness of student learning via educational simulation environments. Knowing this, the first step in our journey is the need to understand exactly what happens in such an environment. There are several of these environments currently running at North Dakota State University, and each will be examined and described in an attempt to provide this information to the reader. Following the descriptions of the environments, an inquiry into the current state of case-based tutoring for educational purposes will be reviewed.

3.1 Principles of Educational Simulation Environments

The design of an educational simulation environment is based upon several core principles, the first being that the environment is role based. This allows the student to fully assume the role of a character trying to accomplish some predetermined goal. By immersing him or herself in the role, the student is able to experience first hand the difficulties, challenges, and decisions that are faced by such a character. This capability is further strengthened by the fact that the student is able to do so at their leisure without having to face the consequences of ignoring decisions in the real world. They are able to log into, and log out of the virtual world at any time and may even start over if they wish; further allowing them to learn from their mistakes and improve their learning experience [Zelenak 99].

The second key principle in education simulation environments is that the environment itself must be immersive. As the student assumes a particular role in the environment, he or she becomes immersed in it and starts to think and make decisions like that character would [Slator 99]. This further reinforces the learning of the student throughout the experience.

The next principle is that the simulation must be highly interactive [Slator 99]. An example in the DollarBay environment is that players are able to set prices for their store, make purchases of new products from warehouses, purchase advertising, learn about sales trends from their employee, and even talk to other players that are currently logged on to the game if they happen to cross paths.

Environments must also have a goal or objective to accomplish. Having an objective motivates the student to explore the world for better strategies to solve the problem quicker and gives the student a goal to look forward to as the student proceeds through the stages of reaching toward that goal [Slator 99]. This is easily seen in Planet OIT, where each player is given a goal of identifying a certain type of object and then proceeds by searching for objects and analyzing them for their chemical composition to determine if they found what they are searching for.

The final principle of a successful educational environment is that it is game like [Slator 99]. Research has shown that students quickly tire of rigid coursework designed to teach material at a set pace [Schank 91]. Dr. Slator often adopts the game like principle in his classes. Some recent examples are the spring 2001 CS 426/626 Introduction to Artificial Intelligence class where teams of students were each responsible for implementing an atmosphere agent of their choice in the Blackwood simulation. Another example is when the spring 2002 CS345 class students worked on expanding DollarBay to contain more products, collectible items of interest, and social areas such as restaurants.

Experiences such as these allow students to implement hands on solutions to practical problems, apply artificial intelligence and other computer science theory to real problems, and take part in developing game like applications. Research also suggests that learning new concepts by actively applying knowledge creates deeper retention and understanding of the knowledge being taught versus learning it passively [Zelenak 99].

3.2 Virtual Educational Environments at NDSU

The following environments at NDSU will now be explored in more detail to better explain the goals and capabilities of each.

3.2.1 Virtual Cell

The Virtual Cell is a 3-D rendering of an interactive biological cell. Students are given assignments by a lab instructor, and sent out to explore cells in tiny submarines. Each cell contains cellular structures such as chloroplasts, mitochondria, the nucleus as well as the cytoskeleton. As students maneuver in and around the cell in their submarine, they are able to examine the biological relationships between various parts of the cell. This experience will improve the student’s understanding of the biological processes within the cell [Slator 99].

3.2.2 Planet OIT

Planet OIT is a part of the Geology Exploration Project and is used by geology students at NDSU. Students, playing the role of geologists on a field exploration of the mythical Planet OIT, are asked to acquire a set of field instruments. They are then assigned a sequence of goals and issued an electronic logbook to record their findings. Students conduct field experiments on various materials that they discover on the planet surface in order to properly identify them and achieve their goals.

3.2.3 Blackwood

Blackwood is a simulation of a 19th century western town populated with intelligent agents who simulate the economic environment representative of the time. Players accept a role in the environment and are forced to compete with other players and agents holding the same role [Slator 99]. A few examples of the roles players may be asked to take include a blacksmith, banker, gunsmith, saloon owner, and news stand owner. In the process of trying to run a business in this time period, students are exposed to various situations and challenges.
3.2.4 DollarBay

The DollarBay world allows students to simulate owning and operating their own retail store in the city of DollarBay. The city itself is composed of several neighborhoods, each possessing its own demographic. Throughout the game, automated shoppers routinely set out with the intent to buy everything that they can find on their current shopping list. If a player can provide shoppers with a winning combination of service, price, and reliable stock, they will be at no loss for customers.
Students begin the game with an empty store and $20,000. They are immediately forced to venture out and visit wholesale retailers to find products to stock the store, hire an employee from the available pool, decide how to price the products they are selling, and decide if and how to advertise. Students who quickly overcome these challenges and figure out how to best serve the needs of the shoppers rapidly rise to be profitable.
3.2.5 Intelligent Tutoring in Virtual Environments

The overall goal of intelligent tutoring is to focus on developing and employing intelligent agents within multi-user distributed simulations to help provide effective learning experiences [Slator, Brian M. 99]. The agents should be there when you need them and be constantly looking over your shoulder to monitor your progress. In the virtual worlds at NDSU described thus far, there are three different approaches to intelligent tutoring: deductive, rule-based, and case-based.
3.2.5.1 Deductive Tutoring

Examples of deductive tutoring may be seen in Planet OIT. One such example is the equipment tutor. While a student is purchasing equipment to carry out their geological experiments, the tutor checks to see if the equipment can be used to meet any of the students assigned goals. If the equipment is not useful to the student, the tutor may decide to bring this fact to their attention. The tutor uses deductive reasoning based upon its knowledge of rocks and minerals to decide when this is necessary [Slator, Brian M. 99].
Another interesting example of deductive tutoring in Planet OIT is the science tutor. This tutor looks at the decision making process that a player follows while trying to properly identify a material. For example, by analyzing how many attempts were made to identify a material and what tests were performed on the material the tutor is able to identify students who have made “lucky guesses” and let the student know that they did not follow the proper process in getting to their answer.

The Virtual Cell is currently using a deductive tutor to look for “interesting” behaviors by a student. Upon discovering such a behavior, the tutor controller can dispatch a tutor to encourage or challenge the student based on the history of their actions. This tutor is similar to the science tutor in Planet OIT.
3.2.5.2 Rule-based Tutoring

Rule-based tutoring at NDSU was at one time functional in DollarBay. A rule-based tutor functions by knowing a set of rules about a domain, monitoring student action for any indication of breaking one of the rules, and then visiting the student to present a possible solution to the wrongdoing [Slator, Brian M. 99]. For example, one of the rules that the now defunct rule-based tutor in DollarBay monitored was if a student had set their prices to 100% markup. In such an instance, the tutor would send a message to the student informing them that they may be setting their prices too high [Slator, Brian M. 99]. The student was then free to heed the advice of the tutor or ignore it.
3.2.5.3 Case-based Tutoring

One example of case-based tutoring outside the NDSU realm is the Georgia Tech Case-Based Intelligent Tutoring System (GT-CBITS). This system is used to demonstrate the importance of critical information to airplane pilots by using stories of difficult situations or incidents encountered by other pilots. The topics presented can range from problems arising from the complex nature of aircraft, the dynamic nature of the aviation environment, or new/changing features of an aircraft [Palmer 02]. After learning about a situation, students are able to practice correct performance using a desktop simulator.
Case-based tutoring at NDSU is the topic of this paper. It has presently only been implemented in the DollarBay virtual world. The following section describes the details of this implementation.

4. APPROACH

The operation of the case-based lesson building software as it operates in DollarBay is the focus of this section. The case builder is centered on a set of verbs that are all defined on an object named $g.gencase. These verbs control the creation, initialization, comparison, and updating of all cases. The children of the $g.gencase object are the cases themselves. Case updates are carried out periodically during the weekend calculations in the game as well as prior to any tutor message generation.

In addition to the $g.gencase object, a $g.tutor_agent object exists for the purpose of generating the tutor messages. This object owns the verbs that handle the construction of tutor messages and the scheduling of tutor visits. Tutor visits are scheduled during a player’s $g.retail_player:confunc verb, which runs each time the player connects to the game. A detailed explanation of how the case-based message building system operates follows.

4.1. Architecture of Case-based Lesson Building System

The backbone of any case based tutor system is an effective case matching procedure coupled with a substantial case library. Before going into the detail of how the tutor system functions in DollarBay, it is important to understand the format and organization of the cases.

The fundamental building block of any case-based system is a case. All cases in DollarBay are children of the $g.gencase object. The cases are divided into four distinct groups:

1. Active Cases ($g.active_cases) – the current cases for each active player’s store

2. Historical Cases ($g.historical_cases) – a copy of the final case for each store when the player is reaped and moved to the Hall of Fame. The Hall of Fame is a place where players are moved when they graduate from the game by reaching a profit goal or are inactive for a long period of time

3. Case Library ($g.case_library) – a copy of each unique case that has occurred in the history of DollarBay. Each of these cases represents a unique combination of the eight abstract properties of a case

4. Prototypical Cases ($g.protocase) – the five prototypical cases that are used by the tutor to determine the abstractness of a match. The descriptions of these cases currently are:

a. Overcautious – player has plenty of money and is not using it to stock rapidly or expand product lines

b. Overspender – player is too liberal with money (expensive employee, expensive ads, loans) and has no clear price advantage or plan

c. Best Player – player is not doing anything that is obviously wrong

d. Barking up the Wrong Tree – player products and services do not match ads and the prices are not appealing to target group

e. Foolish Squanderer – player is bleeding money and has no clue about how to run a business

In DollarBay, each case shares a set of similar attributes that define it. At a baseline level, each case contains information about its store, its company, its owner (the player), and the current state of each of its eight key features or abstract similarity values. These similarity values are set by the case builder algorithm and are based on preset control limits. A list of the similarity measures, their acceptable values, and a brief description of how each is calculated follow:

1. product_focus {"not evaluated", "tight", "moderate", "wide"} – looks at a list of the current product families and number of products stocked for each store. Computes a “focus factor” based on ratio of number of types to total quantity stocked and uses this value to set the property

2. restock_plan {"not evaluated", "understocking", "acceptable", "overstocking"} – estimates annual sales based on accounting records and annual revenue from the price of items currently on order. Creates a ratio of projected revenue to projected sales to set the property

3. ad_cost {"not evaluated", "low", "affordable", "high"} – uses the liquid assets and advertising costs of a company to compute the average advertising cost per day. Determines the percent of available cash used to purchase advertising to set the property

4. ad_target {"not evaluated", "fuzzy", "okay", "focused"} – gets a set of cluster groups based on what ads are running, looks at the sales records, and determines the effectiveness of each ad based on the attractiveness of the ad to each cluster group from the sales. Sets the property based on the results of this comparison

5. staff_level {"not evaluated", "underskilled", "appropriate", "overskilled"} – generates a ratio of current staff cost to total sales to set this property

6. cash_reserves {"not evaluated", "low", "moderate", "high"} – gets the current cash on hand, the total of all expenses incurred, and calculates the average daily expenses to set this property

7. price_margin {"not evaluated", "low", "moderate", "high"} – obtains the current cost and price for each product, computes the markup for each, and sets the property based on the result

8. liability {"not evaluated", "good", "risky", "very risky"} – gets the daily loan payments and generates a ratio of payments to income. Sets the property based on the result

In addition to the abstract similarity attributes of a case that are listed above, each case contains additional attributes that are used to assist in case-based lesson building. Although each of these attributes may not be used in every type of case (explained below), an explanation for each follows:

1. active_similarity – contains a ranked list of active player cases sorted by the sum of their abstract similarity values. This attribute is used to determine the most similar active case to the current case

2. prototype_similarity – contains a ranked list of prototypical cases sorted by the sum of their abstract similarity values. This attribute is used to determine the most similar prototypical case to a given case

3. product_list – contains a list of products that are currently in stock for an active player store

4. prototype_family – contains a pair of elements stored in a list. The first element is the object number of the prototypical case that a case matches the most. The second element is a descriptor of how closely the case matches the prototypical case contained in the first element

5. active_tutor_dialog – used during similarity calculations to store a list of information that is later used to generate a tutor message

6. last_tutor_visit – diplays a list containing the turn and timestamp of the last tutor visit a player received

7. library_match_history – a list of lists. Each sub list contains a game turn and library case object number for the first time the current case matched the given library case. This attribute is used to track which library cases an active case has matched over time

8. prototype_tutor_dialog - used during similarity calculations to store a list of information that is later used to generate a tutor message

4.2 Prior Work

At the outset of the implementation of this project, a portion of the work had already been completed. James Walsh, along with several other students in Dr. Slator’s classes, had managed to complete a basic system consisting of the five prototype cases and a few verbs. The proactive help system that was in place allowed an e-mail message to be sent to a player if certain actions they took (setting a price, changing staff level, etc) caused them to match a prototype case. Unlike the current system, no case library existed and the message sent to the player was very generic and not tailored to the situation at hand. It was also unavailable to any student using the GUI interface. In addition to the basic message sending code, several verbs were written to allow cases for each player store to be created, updated, and retrieved. These store cases contained only the eight abstract attributes described above, and were used to capture a snapshot of the player’s behavior.

The current case-based message builder for DollarBay is based upon the original five prototype cases. These cases and their attributes form the backbone of the current system. The messages sent by the proactive help are deactivated. Due to the complexity introduced as a result of the capability of the new system, the case creation, updating, and retrieval verbs have all been heavily modified (most have been completely rewritten). The earlier work done by Walsh and others like him has been instrumental in providing a foundation from which to build, but the level of the current system far surpasses the functionality of any other system created to provide case-based tutoring at NDSU.

4.3 Weekly Case Update

At the end of each week in DollarBay, a set of weekly calculations is run. One of the largest components of these calculations is the creation and updating of player and library cases. This process begins with the weekly case update.

The weekly case update updates the active cases for all of the valid player stores. If an active case for each player store cannot be retrieved, a new case is created for that store. The case is then updated. The number of tutor visits for the week is cleared on the active case. Finally, the case library is updated with the current active case.

4.3.1 Retrieve an Active Case

In order to retrieve a case for a particular store, each of the children of $g.active_cases is examined to see if any of them belong to the store in question. If a match is found for a particular store, it is returned. If no match is found, a new active case is created for the store.

4.3.2 Create a New Active Case

To create a new active case, the input object is first examined to verify that it is, in fact, a player store. If it is a player store, a check is performed to make sure that no active case already exists for the store. When it is confirmed that no active case yet exists for the store, the $recycler is called upon to transform a recycled object a convert it into a new active case.

Recycled objects are simply objects that have been reclaimed at the end of their useful life. By being recycled, their object number is saved for later use. This functionality is primarily used to keep the object numbers from experiencing continual growth throughout the life of the game.

After the recycled object has been reclaimed and converted to a child of $g.active_cases, it must be initialized. Setting the following attributes of the new active case performs initialization:

· aliases – alternate names for the case

· store – the object number of the player store represented by the case

· store_name – the name of the player store represented by the case

· company - the object number of the player company represented by the case

· company_name - the name of the player company represented by the case

· owner_name - the name of the player represented by the case

· name - the name of the case

· store_loc – the location of the store represented by the case

In addition, the case property of the player store is set to the object number of the new case, and the case is returned.

4.3.3 Update an Active Case

Verifying that the case is a valid active case starts the process of updating an active case. The age of the store is then updated on the case, and then each of the eight similarity measures of the case is updated. Table 4.1 displays the eight abstract similarity measures and possible values for each. The values of these measures indicate the abstract properties of a case.
	product_focus
	not evaluated
	tight
	moderate
	wide

	restock_plan
	not evaluated
	understocking
	acceptable
	overstocking

	ad_cost
	not evaluated
	low
	affordable
	high

	ad_target
	not evaluated
	fuzzy
	okay
	focused

	staff_level
	not evaluated
	underskilled
	appropriate
	overskilled

	cash_reserves
	not evaluated
	low
	moderate
	high

	price_margin
	not evaluated
	low
	moderate
	high

	liability
	not evaluated
	good
	risky
	very risky

Table 4.1 – Case Similarity Measure Values

4.3.3.1 Compute Product Focus

The first step to updating this measure is to go through the player’s accounting and build a list of products that they have purchased. This information is then stored on the product_list property of the player’s case. If there is no data, the property is set to “not evaluated”. If there is data on purchased products, then the average quantity purchased per day is used to create a ratio of the number of product types purchased over the quantity. The result of this calculation is used to determine if the player has a “tight”, “moderate”, or “wide” product focus.

4.3.3.2 Compute Restock Plan

Building a list of sales out of the player’s accounting starts the process of evaluating a player’s restock plan. If there are no sales or there is less than two weeks of history, the restock_plan property is set to “not evaluated”. Otherwise, annual sales are projected along with future revenue based upon the shipments currently in the player’s store. The ratio of projected revenue to projected sales is used to determine if the player is “understocking”, “acceptable”, or “overstocking”.

4.3.3.3 Compute Ad Cost

A player’s ad cost is evaluated by first looking at the cash in possession of the player. Ad costs found in the player’s accounting are also added up. If the player has no cash or no ad costs, the ad_cost property is set to “not evaluated”. Otherwise, the average ad cost per mil of net worth is calculated and used to determine if the player’s ad spending is “low”, “affordable”, or “high”.

4.3.3.4 Compute Ad Target

Ad cost is determined by first building a set of consumer groups for the ads a player is currently running. If the player has no ads the ad_target property is set to “fuzzy”. Otherwise a set of consumer groups is constructed based on the ads the player is currently running and sales are checked against the set to see if they are being made to the targeted group. If they are, a score is set based upon the attractiveness of the ads to the consumer group(s), and the result is used to determine if the player’s ad targeting is “fuzzy”, “okay”, or “focused”.

4.3.3.5 Compute Staff Level

To compute the staff level of a player, the total staff cost and total sales are first retrieved from the player’s accounting. If there is no staff cost or sales, the algorithm sets this property to “not evaluated”. Assuming there are staff costs and sales, a ratio of cost to sales is calculated and used to determine if the player is hiring “underskilled”, “appropriate”, or “overskilled” workers for their store.

4.3.3.6 Compute Cash Reserves

Calculating cash reserves begins by building an expense history from the player’s accounting record. If there is no history, the algorithm exits and sets this property to “not evaluated”. Otherwise, the expenses per day are calculated and the result is compared to the amount of cash the player currently has on hand. A ratio of daily expenses to cash on hand is then used to set this property to “low”, “moderate”, or “high” for the player.

4.3.3.7 Compute Price Margin

In order to compute a player’s price margin, the total cost for all items in the player’s store is calculated. If there are no items in the store, the property is set to “not evaluated”. A ratio of markup to costs is then computed and used to set the player’s margin to “low”, “moderate”, or “high”.

4.3.3.8 Compute Liability

The first step to computing a player’s liability is to see if they have any. If not, then the property is set to “good”. Otherwise, the algorithm computes the daily payment and player income based upon loan information in the player’s accounting record. If the player has no income, the property is set to “good”. Otherwise, the income per day is computed as well as a ratio of payments to daily income. The result of the ratio is then used to set the player’s liability to “good”, “risky”, or “very risky”.

4.3.4 Update Case Library

During a case library update the player’s case is first compared to every case in the library. During the comparison, the eight abstract similarity values of the player case are compared to the respective values of each library case. If an exact match is identified, the player’s case is added to the match_history property of the library case.

The match_history property contains a list of the first time any player case has matched a specific library case. If the player’s case has already been matched to the current library case at some point in the past, no new entry is made to the match_history of the case. If the player’s case has never been recorded in the match_history of the matching library case, a new entry is generated using the generate_history_entry algorithm. The entry generated by this algorithm contains the current turn, the store owner object number, the store owner name, and the product families that are currently stocked in the store.

If, after comparing the player’s case to the entire case library, no exact abstract similarity value match is found, a new library case is created. Constructing a new library case consists of reclaiming an object number from the recycler and setting the name and aliases to the default values for the new case. The eight abstract similarity properties for the new library case are then set to the same values as the player case. Finally, the first entry, which contains the player’s information, is made to the match_history list for the new library case.

The final step in updating the case library is to update the library match history for the player case. This property contains a list that keeps track of every library case the player case has ever matched. It is updated by first looking to see if the current entry will be the first. If so, a new entry, which consists of the turn number and the object number of the matching library case, is created. If the entry will not be the first, the last entry in the list is examined to see if its library case is the same as the library case that currently matches the player case. If the last entry does contain the same library case as the current match, no new entry is created. If the last match is not the same as the current library case match, a new entry is generated and added to the end of the list.

4.4 Determining Case Similarity

In order to construct a meaningful tutor message, cases must be compared. This comparison is completed in the hopes of determining similar cases from which information is drawn to construct a message. To accomplish this, the tutor messages depend upon comparisons of the player case to the prototypical cases and the other active cases. The following sections describe the algorithms that accomplish these comparisons.

4.4.1 Compute Similarity Value

The compute_similarity_value verb is a general-purpose comparison engine used to determine the similarity of two cases based upon their eight abstract similarity properties (product_focus, restock_plan, ad_cost, ad_target, staff_level, cash_reserves, price_margin, and liability). The similarity is constructed by comparing each of the abstract properties for the two cases. A direct match results in 10 points, thus creating in a maximum possible similarity value of 80 for two identical cases.

The algorithm begins by looking at each abstract attribute on the two cases. If either case is “not evaluated” for the attribute currently being examined, the attribute is skipped and the next attribute examined. As the comparison is carried out, lists containing matched attributes and unmatched attributes are constructed as is the total similarity point value. The algorithm is able to handle comparison of prototypical cases with multiple values for an attribute by keeping track of the closest comparison between the other case’s value and the multiple attribute values of the prototypical case in such an instance.

Upon completion of the attribute comparisons, the verb checks to see if the comparison involves prototypical cases. If it does, the prototype_tutor_dialog of the active case being compared is set to a list containing the prototypical case object number, a list of the matched attributes, and a list of the unmatched attributes. This data is important for future tutor dialog construction. The verb completes by returning the similarity value that is the result of the comparison.

4.4.2 Prototypical Case Similarity

An active case’s prototypical similarity is stored as a list in its prototype_similarity property. In addition, each active case contains a prototype_family property that describes how strongly it matches the prototypical case that it is most similar to. In order to set the values of these properties, the eval_prototype_similarity_and_sort verb is called on an active case.

The first step in determining an active case’s prototypical similarity is to clear the tutor_dialog property of the case. This property is used to store information generated during the similarity check for later use in constructing a tutor message. The active case is then compared to each prototypical case by calling the compute_similarity_value verb (explained in the previous section).

As the active case is compared to each of the prototypical cases, the result of each comparison is stored in a similarity list as a list containing the object number of the prototypical case and the similarity value. Upon completion of the comparisons, this list is sorted by the similarity values from highest to lowest, and the resulting list is saved as the prototype_similarity property of the active case. The final step in determining prototypical similarity is to set the prototype_family of the active case.

The algorithm that determines the prototype_family of the active case begins by generating a list of the highest ranked prototypical cases. This list is called the family list and is generated in case there is more than one prototypical case with the highest similarity in the active case’s prototype_similarity list. In the event that there is a single entry in the family list, the prototype_family of the active case is set to the prototypical case of that entry. If there is more than one prototypical case in the family list, the algorithm compares the entries to determine which should be set as the prototype_family for the active case.

If the family list contains multiple similarity values that do are not near the maximum value, it first looks to see if one of them is for a “best player” prototypical case. If so, the algorithm will avoid setting the active case prototype_family to this prototypical case since it is not justifiable to have a weak similarity to being a best player and end up classified as such. The algorithm then looks to see if the family list contains a “barking up the wrong tree” prototypical case. The algorithm will avoid setting the active case’s prototypical_family to this value as well, because it is the broadest of all the prototypical case categories. By following these rules for classifying an active case, the algorithm avoids weak prototype_family classifications of “best player” and any classification of “barking up the wrong tree” whenever another (more specific) option is available. Once the optimal prototypical case is determined, it is set in the player’s prototype_family property.

The final step in setting the prototype_family of an active case occurs by determining the strength of the match between the active case and the prototypical case. If the similarity value for the matched prototype family is high (in the top 25% of the similarity value range), the match is classified as “strong”. If the similarity value is between 50% and 75% of the maximum value, the match is classified as “weak”. Any prototype_family based upon a similarity value of less than 50% of the maximum, of which there should be very few, is classified as “very weak”. After the strength of the match is determined, it is stored in the active case’s prototype_family property along with the object number of the most similar prototypical case.

4.4.3 Active Case Similarity

An active case’s similarity to the other active cases is stored as a list in its active_similarity property. The value of this property is set by the eval_active_similarity_and_sort verb.

The first thing the eval_active_similarity_and_sort algorithm does is compares the player’s active case against every other active case by calling the compute_similarity_value verb. The results of each similarity computation are stored in a list as a list containing the object number of the compared active case and the similarity value. Upon completion of the comparisons, this list is sorted by the similarity values from highest to lowest, and the resulting list is saved as the active_similarity property of the active case. Each entry in the list contains the object number of the active case that was compared, the similarity of the case to the player’s case, and two zeros that are used as placeholders for the concrete similarity results.

4.4.4 Concrete Active Case Similarity

In addition to the active similarity value based on the eight abstract similarity properties (product_focus, restock_plan, ad_cost, ad_target, staff_level, cash_reserves, price_margin, and liability), it is useful to understand how a player compares to other players in terms that are more concrete. The intent of the eval_concrete_active_similarity verb is to examine active players of the highest abstract correlation in these concrete terms and provide additional comparison criteria to further refine the measure of similarity between them.

The algorithm begins by first determining the similarity value of the highest ranked active case in the player’s active_similarity list (the first case in the list, since it has been sorted). It then proceeds to compute a concrete similarity value for every entry in the player’s active_similarity list that has a similarity value equal to the first entry. The concrete similarity value is returned from a call to the compute_concrete_similarity_value verb. It should be noted that with ten or more players in the game there are often multiple cases with the same active similarity in a player’s active_similarity list, and thus the need for this concrete comparison.

The compute_concrete_similarity_value verb determines a concrete similarity value by comparing several concrete attributes of the player’s case to the active case being compared. It keeps a running total of similarity points based on the results of each concrete comparison and returns it upon completion. There is a verb to handle each of the concrete comparisons and each returns a similarity score for that comparison based upon the strength of the match. The score returned by each verb is currently three points for a strong match, one point for a weak match, and no points for an insignificant match. The sections that follow provide an explanation of each verb. It should be noted that anytime a strong match is identified, a string describing the situation is appended to the active_tutor_dialog property of the player’s case for later use in tutor message generation.

After the compute_concrete_similarity_value verb returns a concrete similarity value, the eval_concrete_similarity verb finishes by updating the active_similarity property of the case with new data. It was previously explained that the eval_active_similarity_and_sort verb placed two zeros as placeholders in each entry of a player’s active_similarity property of their case. The first of these placeholders is now filled with the concrete similarity score for the case, and the second with the sum of the active similarity and the new concrete active similarity scores.

4.4.4.1 Number of Product Families Stocked

This comparison is carried out by the compare_number_of_product_families _stocked verb. The verb functions by first examining the product list of each case and generating a list of product families for each by examining the ancestors of each product in the product lists. Once the list of families is computed for each case, its length is evaluated to determine the number of families stocked. If the two cases stock the same number of product families, a strong match is identified. If the difference between what families the two cases stock is less than 3, then a weak match is identified.

4.4.4.2 Product Families

The compare_product_families verb carries out this calculation by first examining the product list of each case and generating a list of product families for each by examining the ancestors of each product in the product lists. Once the list of families is computed for each case, an intersection list is generated that contains only the families found in both individual case lists. A ratio of the length of the intersection list to the length of the player’s case list is then computed. If the ratio is 80% or greater a strong match is identified. If the ratio is greater than 50% a weak match is identified.

4.4.4.3 Number of Products Stocked
A verb named compare_number_of_products_stocked is responsible for calculating this comparison. It begins by computing the length of the products list for each case. It then takes the difference and converts the result to its absolute value. If the result is four or less, a strong match is found. If the difference is found to be ten or less a weak match is identified.

4.4.4.4 Average Markup
This measure is determined by the compare_average_markup verb. The verb operates by calling the compute_average_markup verb on each case. Compute average markup looks at all of the owned_objects of a store’s owner, determines if each is a shipment, calculates the percent markup of the shipment, adds the markup to a running total, and increments a counter. When the verb is finished looking at all of the owned_objects, it then divides the total markup by the counter to get the average markup percentage for products in stock, and returns that result.

Upon receiving the average markup percentage, compare_average_markup continues by computing the difference in average markups between the two cases. A strong match is determined if the difference is 3% or less, a weak match if it is found to be 12% or less.

4.4.4.5 Cash
The compare_cash verb is responsible for this calculation. It begins by looking at the cash property of the company for each case and computing the difference. A difference in cash of $2,000 or less indicates a strong match, if it is $8,000 or less the match is considered weak.

4.4.4.6 Player Age
The compare_player_age verb begins by looking at the first_connect_time property for the owner of each player case. The times are converted to turns, and the difference of the times is calculated. If the players both started within three turns of each other, it is considered a strong match. If the players started within ten turns of each other, the match is considered weak.

4.4.4.7 Items Sold Last Week
In order to compute this measure, the compare_items_sold_last_week verb is called. This verb begins by checking for invalid employees on each case. If an employee is found for both cases, the comparison begins by examining the lw_sold property on each employee. A total of items sold is then computed for each case using this property and the difference between the two cases is figured. If the difference in items sold is three or less, a strong match is found. If the difference is found to be ten or less, it is determined to be a weak match.

4.4.4.8 Sales Lost for Not Stocked
This comparison is carried out by the compare_sales_lost_for_not_stocked verb. The verb begins by checking for invalid employees. If both cases have valid employees, it examines the lw_not_stocked property of each. A running total of lost sales for each employee is then computed and the difference taken. If the difference of lost sales is three or less a strong match is set and if the difference is found to be ten or less, a weak match.

4.4.4.9 Employee Type
Employee type comparison is carried out by the compare_employee_type verb. Each case is examined to see if it has a valid employee property set. If both do, then the employee parents are checked for both cases. If the parent is the same for both employees, a strong match is found. If no strong match is found, the aliases property of the two employees is examined to see if they are both of the same high-level classification. If it is found that they are, then a weak match is found.

4.4.4.10 Ad Type
The compare_ad_type verb is responsible for determining the similarity of this attribute. It begins by fist looking to see if the company for each case has ads. If so, it looks to see if any of the ads match in each of the cases ad lists. For each instance where the cases are found to be running the same ad, a strong match point value is awarded. If two ads are compared and it is determined that they are not the same ad, they are examined to see if they are the same size. If it is found that they are, a weak match point value is awarded. In the end, this verb returns the running total of points based upon the comparison of every ad the two cases are running.

4.4.4.11 Net
Net similarity is determined using the compare_net verb. This verb begins by looking at the net_worth property of each case’s company and taking the difference. If the difference is found to be $3,000 or less, it is considered to be a strong match. If the difference is found to be $10,000 or less, it is considered a weak match.

4.5 Sending a Tutor

This tutoring process is currently triggered whenever a player logs in to DollarBay. During execution of the confunc (a function called at connect time), several criteria are checked to see if the player should receive a tutor. The player must meet all of the criteria to receive a tutor visit. The criteria are:

· Is the player a valid player?

· Is the tutor_enable property of the player set?

· Is it true that the player has received no tutor visits yet this week?

· Has the player been playing for more than twelve hours?

4.5.1 Schedule Tutor Visits

If all of the criteria are met, the process begins by calling the schedule_tutor_visits verb. This verb coordinates the scheduling and sending of tutors to players that have just connected to DollarBay and limits the number of tutors that are sent at one time in order to avoid overloading the server. It begins by adding the connecting player to the list contained in the needs_tutor property of the tutor agent. It then forks a process to handle the sending of the tutor to the player(s) in that list. The process looks to see if players are in the needs_tutor list (at a minimum, the player that just connected should be in the list). It will continue processing all players in this list until it is empty. The forked process then looks to see how many tutor processes are currently running. If less than four tutors are currently active the process continues, otherwise it returns and lets the four active tutor processes handle the player who has just connected.

If there are less than three tutors running, the new process begins by taking a snapshot of the players in the needs_tutor list. The process then finds the player in the list with the lowest net worth, operating on the theory that the player who is doing the worst needs tutoring the most. That player is then removed from the list and the send_tutor verb is called to dispatch a tutor to that player. Upon returning from the send_tutor verb, the number_of_tutor_visits_this_week property of the player is updated to document that the player has been visited by a tutor this week (turn) and the needs_tutor list is examined to see if any players needing tutoring remain in the list. If so, the process repeats itself. Otherwise, the forked process terminates.

4.5.2 Send Tutor

The first thing this verb does is increment the active_tutors property of the tutor_agent. It then proceeds to call update_active_case, eval_active_similarity_and_sort, and eval_concrete_active_similarity (each described in section 4.4) to completely update the player’s case. The player is then examined to see if they are a perfect match to the best player prototypical case. If it is found that they are indeed a best player, the active_tutors counter is decremented and the verb returns without doing anything.

If the player is not found to be a best player, a message is constructed for transmission to the player. The message begins with an introduction from the tutor. Following the introduction from the tutor, the build_active_message, build_prototype_message, and build_historical_message verbs are called to generate the personalized lessons for the player. Each of these verbs is explained in detail in the following sections.

The customized lessons are appended to the greeting and sent to the player as a tutor message via the show_note verb. The show_note verb pops up a new window containing the tutor message on the player’s screen. The player may choose to read or ignore the message, and may keep the window open for reference throughout their playing session. A sample tutor message is displayed in Figure 4.1 below. Notice how the message contains general information as well as specific lessons that are customized for the player.

[image: image2.png]
Figure 4.1 – Sample Tutor Message

The tutor_update verb completes by updating the last_tutor_visit property of the player’s case with the turn and time that the tutor message was sent. It also decrements the active_tutors property before it completes the process of sending the tutor to the player.

4.5.3 Build Active Message

The build_active_message verb creates a customized tutor lesson for the player based upon the store that is currently most similar to the player’s store. It begins by looking at the active_similarity list on the player case to find the store that is most similar to the player. A list of similar traits is then grabbed from the player’s active_tutor_dialog (which was generated during the case update as described in Section 4.4). The verb then constructs a message of the following nature:

“If I were to pick a store that you are most similar to, it would be XXX’S which is located in XXX’S_NEIGHBORHOOD. The things you have most in common with XXX’S are that you both:

· SOME SPECIFIC TRAIT MATCH INFO

· MORE SPECIFIC TRAIT MATCH INFO

· ETC.

Keep in mind that this may be good or bad, depending on how XXX’S is performing.”

The items shown in bold are replaced with information specific to the matched player store, and the lesson is returned to the send_tutor verb where it is appended to the tutor message.

4.5.4 Build Prototypical Message

The build_prototype_message verb creates a custom lesson for the player based upon the prototypical case that they are most similar to. The lesson is pieced together to look something like this:

“You STRONGLY OR WEAKLY remind me of a player who was TYPE. In general this means that:

· GENERAL_TYPE_MESSAGE

My advice for you is to:

· SPECIFIC_MESSAGE

· ANOTHER_SPECIFIC_MESSAGE

· ETC.”

Table 4.2 shows the possible type and general type messages that would be inserted into the lesson. Each of these messages is intended to give the player

	TYPE
	GENERAL_TYPE_MESSAGE

	overcautious
	you are not using your cash to expand or keep your stock level where it should be

	overspending
	you are far too liberal with your money

	one of the best players
	you are doing a great job

	barking up the wrong tree
	your products and service do not match your advertising, and your price is not appealing to your target group

	a foolish squanderer
	you are breaking the bank and are not using ANY sound business practices

Table 4.2 – Prototypical Case Types and General Messages

a general sense of their behavior pattern. The message for each player is based upon which prototype family they belong to.

The specific messages added to the end of the lesson are described in Table 4.3 (following page). The player will receive eight of these messages (one for each abstract similarity measure). Each message provides a detailed explanation on how a player should alter their behavior to better succeed or an affirmation of good behavior for each of the abstract similarity properties. The addition of these specific messages completes the construction of the prototypical tutor lesson, which is then returned to the send_tutor verb.

	Attribute
	Value
	Message

	product_focus
	tight
	- stay focused on the types of products you are selling... good job!

	
	moderate
	- don't change to any new types right now

	
	wide
	- stick with selling the same types of products... don't change between different types

	restock_plan
	understocking
	- stock more quantity of the products you sell

	
	acceptable
	- keep stocking the same quantity products you sell... good job!

	
	overstocking
	- stock less quantity of the products you sell

	ad_cost
	low
	- spend more of your income on ads

	
	affordable
	- keep spending the same amount of your income on ads... good job!

	
	high
	- spend less of your income on ads

	ad_target
	fuzzy
	- use market research to properly target your ads for the consumers you need to reach

	
	okay
	- use market research to improve the targeting of your ads and reach the right consumer groups

	
	focused
	- keep targeting your ads to reach the right consumer groups... good job!

	staff_level
	underskilled
	- hire a more skilled employee to meet the needs of your customers

	
	appropriate
	- keep your current employee... good job!

	
	overskilled
	- hire an employee with less skill and stop wasting your money on the one you have

	cash_reserves
	low
	- try to keep more cash on hand

	
	moderate
	- keep the same amount of cash on hand... good job!

	
	high
	- try to spend more of your cash to improve your situation

	price_margin
	low
	- keep your prices competitive... good job!

	
	moderate
	- improve your prices as they are only marginally competitive

	
	high
	- lower your prices to get competitive

	liability
	good
	- keep your liability at an acceptable level... good job!

	
	risky
	- consider reducing your liability

	
	very risky
	- reduce your liability as soon as you can

Table 4.3 – Specific Prototypical Case Tutor Messages

4.5.5 Build Historical Message

The final lesson to be appended to the tutor message is based upon the history of the player. This lesson is constructed by going through the player’s library_match_history and examining all of the prototype case families a player has matched over time. The families are chronologically ordered, the duration of time spent at each is calculated, and a lesson of the following format is constructed:

“Going back in time from present to distant past, it seems that you have been:

· TYPE STRONGLY_OR_WEAKLY for X_NUMBER_OF weeks

· TYPE STRONGLY_OR_WEAKLY for X_NUMBER_OF weeks

· ETC.”

where the type correlates to one of the values in the first column of Table 4.2. If the player is currently “one of the best players”, a message stating, “You are doing a great job! Keep it up” is appended to the end of the lesson. If the player was previously “one of the best players”, but has slipped into another prototypical family type, a message stating, “You were doing a great job! What happened???" is appended to the end of the lesson. The verb completes execution by returning the result of the lesson to the send_tutor verb.

5. EVALUATION

The case-based tutoring software implemented in DollarBay enriches the player experience by providing customized lessons in order to improve player strategy and performance as the game progresses. This chapter will cover the results of two experiments that were conducted to demonstrate the capability of the case-based tutoring approach. The first experiment set out to exhibit the ability of the case library to continually capture and categorize unique occurrences of cases as the game was played. The second experiment captured the effects of the tutor on player performance during its first use in the 2001 Summer Governor School DollarBay Tournament.

5.1 Case Library Construction

Let us begin by discussing the case library experiment. Members of Dr. Slator’s CS426/626 class performed the experiment during the period of 27-April-2001 to 4-May-2001. Instructions were sent to each student in the class via email. The students were divided into 5 groups. Each group was assigned a player, given a specific behavior pattern to follow in the hopes of mimicking one of the five prototype cases, and asked to log on several times a day in order to keep their player focused on the appropriate behavior. The specific instructions given to each group are shown in Table 5.1 on the next page.
	Group
	Instructions

	1 - Overcautious
	- stock 1 or 2 different types of items and never change to different ones

- stock a very low quantity of each item

- buy cheap advertising

- try to target your ads effectively

- hire the cheapest employees

- keep lots of cash on hand

- keep your price markup very low

- borrow no money from the bank

	2 - Overspender
	- stock many types of items

- stock a very high quantity of each item

- buy a lot of advertising

- try to target your ads effectively

- hire the most expensive employees

- keep very little cash on hand

- keep your price markup very high

- borrow lots of money from the bank

	3 – Best Player
	- stock a few products that fit the demographics of your neighborhood

- stock quantity according to demand

- buy ads that are targeted to your consumer group

- try to target your ads effectively

- hire the appropriate employee for your product mix and target consumer group

- keep about 20% of your cash on hand

- keep your price markup low

- borrow money only to expand

	4 – Wrong Tree
	- stock many types of items

- stock a very low quantity of each item

- buy no advertising

- hire the cheapest employees

- keep very little cash on hand

- keep your price markup very high

- borrow lots of money from the bank

	5 – Fool
	- stock many types of expensive items

- stock a very high of each item

- buy a lot of advertising

- don't try to target your ads

- hire the most expensive employees

- keep no cash on hand

- keep your price markup very high

- borrow lots of money from the bank

Table 5.1 – Specific Instructions for Case Library Construction Groups

Upon completion of the experiment, each player was asked to write up a short narrative describing his or her “career” in DollarBay. These narratives may be used in the future to further enhance the capability of the case-based tutor. The narratives that were submitted by the students are listed in Appendix D.

In order to demonstrate the functionality of the case library construction software component of the case-based tutor, an analysis was performed on the cases in the case library. The results of the analysis can be seen in Appendix C. Table 5.2 on the following page displays a summary of the data by showing the number of turns each player matched each prototypical case family throughout the experiment. It should be noted that each player was inactive for thirty turns before being reaped, so the case library matches during the last thirty turns of each player are not indicative of player behavior. There is, however, strong evidence that the prototype similarity and family algorithms need to be tuned to provide a more accurate picture of player behavior. It is also possible that additional prototype cases are needed to fully represent the range of player behavior.

At the end of the experiment, there were thirty new library cases, the analysis described above, and twenty-three player narratives to show for results (Appendix D). Although the results of the analysis did not clearly show each player being classified as expected, they have provided valuable insight about weaknesses in player behavior coverage of the current case-based tutoring prototypical cases.
	Player
	Group
	Over-cautious
	Over-spender
	Best Player
	Barking Up Wrong Tree
	Foolish Squanderer

	Owner11
	Overcautious
	41
	
	2
	11
	

	Owner12
	Overcautious
	4
	
	4
	47
	

	Owner13
	Overcautious
	4
	
	4
	47
	

	Owner14
	Overcautious
	4
	
	4
	46
	

	Owner15
	Overcautious
	26
	
	
	29
	

	Owner21
	Overspender
	5
	
	
	50
	

	Owner23
	Overspender
	
	
	
	54
	1

	Owner24
	Overspender
	
	3
	
	50
	2

	Owner25
	Overspender
	2
	
	
	52
	

	Owner26
	Overspender
	2
	
	
	52
	

	Owner31
	Best Player
	
	
	
	
	

	Owner32
	Best Player
	
	48
	
	7
	

	Owner33
	Best Player
	
	
	
	52
	

	Owner34
	Best Player
	
	
	
	55
	

	Owner35
	Best Player
	
	52
	
	
	

	Owner41
	Wrong Tree
	
	
	
	52
	

	Owner42
	Wrong Tree
	
	
	
	55
	

	Owner43
	Wrong Tree
	
	
	
	50
	

	Owner44
	Wrong Tree
	
	
	
	54
	

	Owner45
	Wrong Tree
	
	
	
	55
	

	Owner51
	Fool
	6
	32
	
	11
	

	Owner52
	Fool
	
	
	
	55
	

	Owner53
	Fool
	
	49
	
	6
	

Table 5.2 – Prototypical Families of Player Case Library Matches
5.2 Governors School Tournament

The second experiment conducted as a part of this research was aimed at capturing the effect of tutoring on players participating in a tournament in DollarBay. This goal was approached by activating the tutor on approximately half of a group of twenty students that were playing DollarBay as a part of the 2001 Governor’s School Program. Students involved in Dr Slator’s class through the program had already completed a two-week tournament in DollarBay with the following results from the DollarBay scoreboard displayed in Table 5.3. The table shows the ranking of each of the players in DollarBay sorted by Net Worth and Profit.
	Store
	Net Worth
	Liquid assets
	Profit
	Liability

	student10
	$114,097
	$90,832
	$89,097
	$0

	student14
	$64,563
	$48,465
	$39,563
	$0

	student02
	$47,802
	$37,672
	$22,802
	$0

	student07
	$45,691
	$44,109
	$20,691
	$0

	student04
	$45,105
	$31,690
	$20,105
	$0

	student13
	$41,311
	$33,871
	$16,311
	$0

	student01
	$39,086
	$37,928
	$14,086
	$0

	student18
	$36,568
	$29,973
	$11,568
	$0

	student03
	$33,130
	$17,381
	$8,130
	$0

	student09
	$32,537
	$32,537
	$7,537
	$0

	student17
	$32,347
	$20,007
	$7,347
	$0

	student15
	$29,965
	$28,513
	$4,965
	$0

	student12
	$28,635
	$12,745
	$3,635
	$0

	student16
	$27,249
	$26,929
	$2,249
	$0

	student11
	$26,189
	$11,535
	$1,189
	$0

	student08
	$26,049
	$24,682
	$1,049
	$0

	student06
	$24,197
	$10,527
	($803)
	$0

	student05
	$16,711
	$371
	($8,289)
	$0

Table 5.3 – Results of Governor School Tournament with no Tutoring

In order to have the students partake in a second tournament, approval of their parents/guardians was obtained because the students were minors. In order to meet the requirements of the Institutional Review Board (IRB), the paperwork found in Appendix E was sent home with each of the students and only data generated by students returning the necessary paperwork (eighteen of the twenty students in the class) was used in this study. Any data that has been used has been completely stripped of any information that may identify the students by name in order to protect their identities.

Table 5.4 (following page) shows the scoreboard after three weeks of play in the second tournament. During this tournament, the tutor was activated for ten of the eighteen eligible players. The players with the tutor activated have been marked as such in the Tutor column. These players received a customized tutor lesson once per turn as they played the second tournament. Table 5.5 (two pages forward) compares player performance between the two tournaments. As you can see, three of the ten students with the tutor enabled performed better that they did in the first tournament, five performed worse, and two stayed the same. These results are not as expected and additional work may be needed to understand why.

	Store
	Net Worth
	Liquid assets
	Profit
	Liability
	Tutor

	student12
	$170,834
	$169,898
	$145,834
	$0
	

	student10
	$150,553
	$148,153
	$125,553
	$0
	y

	student11
	$113,854
	$112,354
	$88,854
	$0
	

	student03
	$76,328
	$70,828
	$51,328
	$0
	

	student06
	$50,396
	$50,396
	$25,396
	$0
	

	student04
	$47,996
	$47,996
	$22,996
	$0
	y

	student13
	$39,831
	$38,031
	$14,831
	$0
	y

	student09
	$38,190
	$38,166
	$13,190
	$0
	y

	student05
	$36,274
	$35,334
	$11,274
	$0
	y

	student01
	$34,148
	$30,204
	$9,148
	$0
	

	student18
	$24,019
	$7,249
	($981)
	$0
	y

	student17
	$21,496
	$21,496
	($3,504)
	$0
	

	student07
	$19,059
	$19,059
	($5,941)
	$0
	

	student16
	$13,772
	$10,865
	($11,228)
	$0
	y

	student02
	$13,544
	$25,390
	($11,456)
	$11,846
	y

	student08
	$6,440
	$6,440
	($18,560)
	$0
	y

	student14
	$4,965
	$16,645
	($20,035)
	$13,720
	

	student15
	$275
	$8,863
	($24,725)
	$9,788
	y

Table 5.4 – Results of Governor School Tournament with Tutoring

	Store
	1st Tournament Rank
	2nd Tournament Rank
	Change
	Tutor

	student01
	7
	10
	-3
	

	student02
	3
	15
	-12
	y

	student03
	9
	4
	+5
	

	student04
	5
	6
	-1
	y

	student05
	18
	9
	+9
	y

	student06
	17
	5
	+12
	

	student07
	4
	13
	-9
	

	student08
	16
	16
	0
	y

	student09
	10
	8
	+2
	y

	student10
	1
	2
	-1
	y

	student11
	15
	3
	+12
	

	student12
	13
	1
	+12
	

	student13
	6
	7
	-1
	y

	student14
	2
	17
	-15
	

	student15
	12
	18
	-6
	y

	student16
	14
	14
	0
	y

	student17
	11
	12
	-1
	

	student18
	8
	11
	+3
	y

Table 5.5 – Comparison of Governor School Tournaments

.

6. CONCLUSIONS AND FUTURE WORK

As virtual educational environments grow in popularity, students will have more opportunities to learn subjects at their own pace. They will be able to use the environments to increase their understanding of course content, learn new course material, or for entertainment purposes. At North Dakota State University several of these environments are already available to students to learn about a variety of subjects: DollarBay for retailing experience, Planet OIT for geological exploration, Blackwood for regional history, and Virtual Cell for cellular biology. Each of these environments extends the teaching experience beyond the traditional classroom experience.

However, one of the challenges of teaching via virtual educational environments is the customization of individualized lessons for each student. One approach to providing this critical feedback is the case-based tutoring implemented in DollarBay. It is a very useful tool in that it constantly monitors player behavior, is able to periodically provide advice based upon that behavior, and can even provide some comparison to players with similar behavior so that a player can examine and learn from other students in addition to the tutor. It also allows instructors to analyze the playing patterns of students via the cases they have created and matched over time and better understand the types of feedback that are needed by each student.

One of the current weaknesses of the system, as indicated in section 5.1, is that a better set of prototype cases is needed to more accurately model player behavior. With the case library that has been generated to date, future research may be able to use data mining to determine exactly what prototypical cases need to be implemented to rectify this situation. Upon successfully incorporating new prototypical cases to the system, the tutor would then be able to provide more specific and accurate advice to players matching each prototypical case.

Another improvement to the system would be the conversion of the tutor message delivery from a pop up note on the player’s screen to an actual tutor agent that visits the player’s store. In order to accomplish this, a conversation network would need to be configured for the tutor. With the incorporation of this feature, students would then be able to engage in an interactive conversation with the tutor and ask different types of questions based upon the portions of the lesson they feel are most important to them at the time.

REFERENCES

[Bouzeghoub 97]
Bouzeghoub, Mokrane, George Gardarin, and Patrick Vaduriez, “Object Technology: Concepts and Methods”, International Thompson Computer Press, Boston, MA, 1997.

[Comer 99]
Comer, Douglas E., “Computer Networks and Internets”, Chapter 23, Prentice Hall, Upper Saddle River, NJ, 1999.

 [Curtis 97]
Curtis, Pavel. “LambdaMOO Programmer’s Manual for LambdaMOO Version 1.8.0p6”, Xerox, San Francisco, CA, March 1997.

[Headington 97]
Headington, Mark R. and David D. Riley, “Data Abstraction and Structures Using C++”, Chapter 10, Jones and Bartlett, Sudbury, MA, 1997.

[Kolodner &Leake 96]
Kolodner, Janet L. and Leake, David B., “Case-based Reasoning: Experiences, Lessons, and Future Directions”, Chapter 2, AAAI Press/MIT Press, Menlo Park, CA, 1996.

[Leake 96]
Leake, David B., “Case-based Reasoning: Experiences, Lessons, and Future Directions”, Chapter 1, AAAI Press/MIT Press, Menlo Park, CA, 1996.

[Luger 98]
Luger, George F., and William A. Stubblefield, “Artificail Intelligence – Structures and Strategies for Complex Problem Solving”, Chapter 6, Addison Wesley Longman, Reading, MA, 1998.

[Palmer 02]
Palmer, E., NASA Ames, “Case-based Intelligent Tutoring for Pilots”, http://human-factors.arc.nasa.gov/projects/ihi/casebased.html
[Schank 91]
Schank, Curtis. “Case-Based Teaching: Four Experiences in Educational Software Design”, ILS Technical Report #7, Northwestern University, Evanston, IL, 1991.

[Slator, Brian M. 99]
Slator, Brian M., “Intelligent Tutors in Virtual Worlds”, 8th Annual Conference on Intelligent Systems (ICIS-99), Denver, CO, June 24-26, 1999.

[Slator 99]
Slator, Brian M. et al., “Research and Development of Virtual Worlds for Immersive Instruction”, Proceedings of the Small College Computing Symposium (SCCS99), La Crosse, WI, April 15-17, 1999.

[Slator et al. 99]
Slator, Brian M., Paul Juell, P.E. McClean, B. Saini-Eidukat, D.P. Schwert, A.R. White, and C. Hill, “Virtual Environments for Education at NDSU”, World Conference on Educational Media (ED-MEDIA99), Seattle, WA, June 19-24, 1999.

[Stansifer 95]
Stansifer, Ryan, “The Study of Programming Languages”, Prentice-Hall, Englewood Cliffs, NJ, 1995.

[Zelenak 99]
Zelenak, Jozef. “Conversation Construction for Agents in Educational Simulation Environments”, Master’s Thesis, Computer Science Department, North Dakota State University, Fargo, ND, 1999.

APPENDIX A: SOURCE CODE

$g:gencase:weekly_case_update

"";

"Updates active cases for all valid stores as well as the case library with";

"any new unique case occurrences, pmr 10may2001";

"";

"";

"Bail out if updates are not running.";

if ($g.batch == 0)

 $g:inform("Case Builder must run during updates.");

 return;

endif

"";

$g.gencase.running = 1;

"";

cnt = 0;

stores = $object_utils:leaves($g.store);

tot = length(stores);

"";

"Build a case for each store";

for this_store in (stores)

 $command_utils:suspend_if_needed(0);

 cnt = cnt + 1;

 $g:inform(tostr("Update case for ", cnt, "/", tot, ": ", this_store.name));

 current_case = $g.active_cases:store_case(this_store);

 $g.gencase:update_active_case(current_case);

 "";

 "Update the case library";

 $g.gencase:update_case_library(current_case);

 "clear the tutor visits";

 this_store.owner.tutor_visits_this_week = 0;

endfor

$g.gencase.running = 0;

$g.gencase:store_case

"";

"Returns tutor case for a store";

"";

store = args[1];

for case in (children($g.active_cases))

 $command_utils:suspend_if_needed(0);

 if (case.store == store)

 return case;

 endif

endfor

"If no store case is found, make a new one";

return $g.gencase:create_new_active_case(store);

$g.gencase:create_new_active_case

"";

"Returns a case for a new store, pmr 9jun2001";

"";

store = args[1];

"";

"Find out if input object really is a store";

if (parent(store) == $g.store)

 "see if there is already a case";

 if (store.case != 0)

 return store.case;

 else

 $g:inform("Make a new case for ", store.name);

 case = $recycler:_create($g.active_cases);

 case.aliases = {"Store Case", "scase"};

 case.store = store;

 case.store_name = store.name;

 case.company = store.owner.company;

 case.company_name = store.owner.company.name;

 case.owner_name = store.owner.name;

 case.name = case.owner_name + " Store Case";

 case.store_loc = case.store.hood;

 store.case = case;

 endif

else

 player:tell("Input object is not a store");

 return #-1;

endif

return case;

$g.gencase:update_active_case

" ;$g.gencase:update_active_case(case)";

"";

"updates a store case, pmr, 24jun2001";

"";

case = args[1];

"";

"Make sure case is valid";

if (parent(case) == $g.active_cases)

 case.store_age = time() - case.store.birth;

 $g.gencase:compute_product_focus(case);

 $g.gencase:compute_restock_plan(case);

 $g.gencase:compute_ad_cost(case);

 $g.gencase:compute_ad_target(case);

 $g.gencase:compute_staff_level(case);

 $g.gencase:compute_cash_reserves(case);

 $g.gencase:compute_price_margin(case);

 $g.gencase:compute_liability(case);

 $g.gencase:compute_products(case);

else

 $g:inform_admin("Connot update because ", case, " is not an active case");

endif

$g.gencase:compute_product_focus

"";

"computes product focus (diversity)";

"";

store_case = args[1];

day = 0;

product_list = {};

product_set = {};

total_qty = 0;

avg_qty = 0;

count = 0;

focus = 0;

"";

"Get history of types of products purchased";

for days in (store_case.company.accounting)

 day = day + 1;

 $command_utils:suspend_if_needed(0);

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 if ($g.gencase:valid_list(trans) > 3 && trans[2] == "prch")

 " if (length(trans) > 3 && trans[2] == \"prch\") ";

 total_qty = total_qty + trans[3];

 product_set = setadd(product_set, trans[4]);

 product_list = $set_utils:union(product_set, product_list);

 product_set = {};

 endif

 endfor

endfor

"update the product_list property";

store_case.product_list = product_list;

"";

"Bail out if no data";

if (day < 1)

 store_case.product_focus = $g.gencase.product_focus[1];

 return;

endif

"";

"Product list has one entry for each product type";

"Count the number of types";

for product in (product_list)

 count = count + 1;

endfor

"Bail out if there are no types in list";

if (count < 1)

 store_case.product_focus = $g.gencase.product_focus[1];

 return;

endif

"";

"Compute average quantity purchased";

avg_qty = total_qty / day;

if (avg_qty < 1)

 avg_qty = 1;

endif

"";

"Compute focus factor as a ratio of types to quantity";

"Ratio is times 1000 for our control limit range";

focus = count * 1000 / avg_qty;

"";

"Compare to limits and update store case";

if (focus < $g.gencase.product_focus_lcl)

 store_case.product_focus = $g.gencase.product_focus[2];

elseif (focus > $g.gencase.product_focus_ucl)

 store_case.product_focus = $g.gencase.product_focus[4];

else

 store_case.product_focus = $g.gencase.product_focus[3];

endif

$g.gencase:valid_list

"";

" valid_list: a temporary hack until there's a real need to validate ";

" accounting records, bms, 1nov00 ";

"";

return length(args[1]);

$g.gencase:compute_restock_plan

"";

"computes restock plan for a store case";

"";

store_case = args[1];

day = 0;

sales = 0;

yr_sales = 0;

yr_revenue = 0;

restock_ratio = 0;

"";

"Get sales history";

for days in (store_case.company.accounting)

 day = day + 1;

 $command_utils:suspend_if_needed(0);

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 if ($g.gencase:valid_list(trans) > 1 && trans[2] == "sale")

 sales = sales - trans[1];

 endif

 endfor

endfor

"";

"Bail out if less than two weeks history";

if (day < 14)

 store_case.restock_plan = $g.gencase.restock_plan[1];

 return;

endif

"Bail out if no sales";

if (sales < 1)

 store_case.restock_plan = $g.gencase.restock_plan[1];

 return;

endif

"";

"Project annual sales";

yr_sales = sales * 365 / day;

"";

"Estimate annual revenue from ordered items";

for shipments in (store_case.store.contents)

 $command_utils:suspend_if_needed(0);

 if (shipments.object_prefix == "#SHIPMENT")

 if (shipments.order != {})

 yr_revenue = yr_revenue + shipments.price * shipments.order[2] * (48 / shipments.order[5]);

 endif

 endif

endfor

"";

"Compute ratio of projected revenue to projected sales";

"One-to-one is midpoint of control limit range (500)";

restock_ratio = yr_revenue * 500 / yr_sales;

"";

"Compare to limits and update store case";

if (restock_ratio < $g.gencase.restock_plan_lcl)

 store_case.restock_plan = $g.gencase.restock_plan[2];

elseif (restock_ratio > $g.gencase.restock_plan_ucl)

 store_case.restock_plan = $g.gencase.restock_plan[4];

else

 store_case.restock_plan = $g.gencase.restock_plan[3];

endif

$g.gencase:compute_ad_cost

"";

"computes ad_cost property for a store case";

"";

store_case = args[1];

day = 0;

total = 0;

liq_assets = store_case.company.cash;

"";

"Bail out if no liquid assets";

if (liq_assets < 1)

 store_case.ad_cost = $g.gencase.ad_cost[1];

 return;

endif

"";

"Add up the ad costs";

for days in (store_case.company.accounting)

 $command_utils:suspend_if_needed(0);

 day = day + 1;

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 if ($g.gencase:valid_list(trans) > 1 && trans[2] == "advt")

 total = total + trans[1];

 endif

 endfor

endfor

"";

"Bail out if no records";

if (day < 1)

 store_case.ad_cost = $g.gencase.ad_cost[1];

 return;

endif

"";

"Compute average cost per mil of net worth";

avg_cost = total / day;

ad_cost_percent = avg_cost * 1000 / liq_assets;

"";

"Compare to limits and update store case";

if (ad_cost_percent < $g.gencase.ad_cost_lcl)

 store_case.ad_cost = $g.gencase.ad_cost[2];

elseif (ad_cost_percent > $g.gencase.ad_cost_ucl)

 store_case.ad_cost = $g.gencase.ad_cost[4];

else

 store_case.ad_cost = $g.gencase.ad_cost[3];

endif

$g.gencase:compute_ad_target

"";

"computes ad target effectiveness";

"";

store_case = args[1];

day = 0;

count = 0;

consumer_set = {};

score = 0;

max_score = 0;

target_score = 0;

"";

"Build set of consumer groups for ads";

ads = $set_utils:intersection(children($g.advertisement), store_case.store.owner.owned_objects);

"Bail out if no ads";

if (ads == {})

 store_case.ad_target = $g.gencase.ad_target[2];

 return;

endif

for ad in (ads)

 consumer_set = $set_utils:union(consumer_set, ad.media.consumer_table);

endfor

"";

"Sample sales and score ad effectiveness";

for days in (store_case.company.accounting)

 count = 0;

 day = day + 1;

 $command_utils:suspend_if_needed(0);

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 if ($g.gencase:valid_list(trans) > 4 && trans[2] == "sale")

 "Sales transactions have imbedded details";

 for detail in (trans)

 $command_utils:suspend_if_needed(0);

 "Make sure detail type is list";

 "Get sample of sale consumer groups";

 if (typeof(detail) == LIST)

 if (count >= $g.gencase.ad_target_samp_size)

 break;

 endif

 count = count + 1;

 "Add attractiveness value to score";

 for group in (consumer_set)

 if (group[1] == detail[3])

 score = score + group[2];

 max_score = max_score + $g.gencase.ad_target_max_score;

 endif

 endfor

 endif

 endfor

 endif

 endfor

endfor

"";

"Bail out if no score";

if (max_score < 1)

 store_case.ad_target = $g.gencase.ad_target[1];

 return;

endif

"Compute targeting score as per mil of max possible";

target_score = score * 1000 / max_score;

"";

"Compare to limits and update store case";

if (target_score < $g.gencase.ad_target_lcl)

 store_case.ad_target = $g.gencase.ad_target[2];

elseif (target_score > $g.gencase.ad_target_ucl)

 store_case.ad_target = $g.gencase.ad_target[4];

else

 store_case.ad_target = $g.gencase.ad_target[3];

endif

$g.gencase:compute_staff_level

"";

"computes staff level for a store case";

"";

store_case = args[1];

staff_cost = 0;

total_sales = 0;

staff_cost_pct = 0;

"";

for days in (store_case.company.accounting)

 $command_utils:suspend_if_needed(0);

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 "";

 "Get total staff cost";

 if ($g.gencase:valid_list(trans) > 1 && trans[2] == "payr")

 staff_cost = staff_cost + trans[1];

 endif

 "";

 "Get total sales";

 if ($g.gencase:valid_list(trans) > 1 && trans[2] == "sale")

 total_sales = total_sales - trans[1];

 endif

 endfor

endfor

"";

"Bail out if no staff cost";

if (staff_cost < 1)

 store_case.staff_level = $g.gencase.staff_level[2];

 return;

endif

"Bail out if no sales";

if (total_sales < 1)

 store_case.staff_level = $g.gencase.staff_level[1];

 return;

endif

"";

"Compute staff cost as per mil of total sales";

staff_cost_pct = staff_cost * 1000 / total_sales;

"";

"Compare to limits and update store case";

if (staff_cost_pct < $g.gencase.staff_level_lcl)

 store_case.staff_level = $g.gencase.staff_level[2];

elseif (staff_cost_pct > $g.gencase.staff_level_ucl)

 store_case.staff_level = $g.gencase.staff_level[4];

else

 store_case.staff_level = $g.gencase.staff_level[3];

endif

$g.gencase:compute_cash_reserves

"";

"computes cash reserves for a store case";

"";

store_case = args[1];

day = 0;

exp = 0;

cash = store_case.company.cash;

"";

"Get expense history";

for days in (store_case.company.accounting)

 day = day + 1;

 $command_utils:suspend_if_needed(0);

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 if ($g.gencase:valid_list(trans) > 1 && typeof(trans[1]) == NUM && trans[1] > 0)

 exp = exp + trans[1];

 endif

 endfor

endfor

"";

"Bail out if no history";

if (day < 1)

 store_case.cash_reserves = $g.gencase.cash_reserves[1];

 return;

endif

"";

"Compute average daily expenses";

avg_exp = exp / day;

"";

"Check for insufficient cash for daily expenses";

if (avg_exp > cash)

 store_case.cash_reserves = $g.gencase.cash_reserves[2];

 return;

endif

"";

"Compute expenses as per mil of cash";

reserves = avg_exp * 1000 / cash;

"";

"Compare to limits and update store case";

if (reserves < $g.gencase.cash_reserves_lcl)

 store_case.cash_reserves = $g.gencase.cash_reserves[2];

elseif (reserves > $g.gencase.cash_reserves_ucl)

 store_case.cash_reserves = $g.gencase.cash_reserves[4];

else

 store_case.cash_reserves = $g.gencase.cash_reserves[3];

endif

$g.gencase:compute_price_margin

"";

"computes price margin for current store inventory";

"";

store_case = args[1];

costs = 0;

prices = 0;

avg_markup = 0;

"";

"Get prices and costs";

for shipments in (store_case.store:contents_list())

 "return if there are no products in the back room";

 $command_utils:suspend_if_needed(0);

 if (shipments.object_prefix == "#SHIPMENT")

 costs = costs + shipments.paid;

 prices = prices + shipments.price;

 endif

endfor

"";

"Bail out if no data";

if (costs < 1 || prices < 1)

 store_case.price_margin = $g.gencase.price_margin[1];

 return;

endif

"";

"Compute average markup";

avg_markup = (prices - costs) * 1000 / costs;

"";

"Compare to limits and update store case";

if (avg_markup < $g.gencase.price_margin_lcl)

 store_case.price_margin = $g.gencase.price_margin[2];

elseif (avg_markup > $g.gencase.price_margin_ucl)

 store_case.price_margin = $g.gencase.price_margin[4];

else

 store_case.price_margin = $g.gencase.price_margin[3];

endif

$g.gencase:compute_liability

"";

"computes liability property for a store case";

"";

store_case = args[1];

day = 0;

payments = 0;

income = 0;

avg_income = 0;

debt_ratio = 0;

"";

"Bail out if no liabilities";

if (store_case.company.liabilities == {})

 store_case.liability = $g.gencase.liability[2];

 return;

endif

"";

"Compute daily payments";

for loans in (store_case.company.liabilities)

 if ($g.gencase:valid_list(loans) > 5 && loans[1] == "loan")

 payments = payments + loans[6];

 endif

endfor

"";

"Compute average daily income";

for days in (store_case.company.accounting)

 day = day + 1;

 $command_utils:suspend_if_needed(0);

 for trans in (days)

 $command_utils:suspend_if_needed(0);

 if ($g.gencase:valid_list(trans) > 1 && trans[2] == "sale")

 income = income - trans[1];

 endif

 endfor

endfor

"Bail out if no income";

if (day < 1)

 $g:inform_admin("No income");

 store_case.liability = $g.gencase.liability[2];

 return;

endif

avg_income = income / day;

"";

"Avoid error due to truncation to zero";

if (avg_income < 1)

 avg_income = 1;

endif

"Compute debt ratio as payments to income";

"Set one-to-one at 500 for control limits";

debt_ratio = payments * 500 / avg_income;

"";

"Compare to limits and update store case";

if (debt_ratio < $g.gencase.liability_lcl)

 store_case.liability = $g.gencase.liability[2];

elseif (debt_ratio > $g.gencase.liability_ucl)

 store_case.liability = $g.gencase.liability[4];

else

 store_case.liability = $g.gencase.liability[3];

endif

$g.gencase:compute_products

"computes product list, pmr 10jul2001";

"";

"usage: ;$g.gencase:compute_products(case) ";

case = args[1];

product_list = {};

product_classes = children($g.product);

"";

"look at all the player's owned objects";

for item in (case.store.owner.owned_objects)

 "if the item is a product";

 if ($object_utils:has_property(item, "product") == 1)

 "add it to the product list";

 product_list = setadd(product_list, item.product);

 endif

endfor

"update the case list";

case.product_list = product_list;

$g.gencase:update_case_library

"";

"updates case library with given case";

"pmr, 25mar2001";

"";

case = args[1];

library = $g.case_library;

number_of_matches = 0;

matched_library_case = 0;

"";

$g:inform_admin("");

$g:inform_admin("UPDATE CASE LIBRARY WITH ", case);

"compare the case to all cases in the library";

for lib_case in (children(library))

 $command_utils:suspend_if_needed(0);

 if (number_of_matches == 0 && lib_case.product_focus == case.product_focus && lib_case.restock_plan == case.restock_plan && lib_case.ad_cost == case.ad_cost && lib_case.ad_target == case.ad_target && lib_case.staff_level == case.staff_level && lib_case.cash_reserves == case.cash_reserves && lib_case.price_margin == case.price_margin && lib_case.liability == case.liability)

 matched_library_case = lib_case;

 $g:inform_admin("Matched library case for ", case, " is ", matched_library_case);

 number_of_matches = number_of_matches + 1;

 "add the current match info if the match_history is empty";

 if (lib_case.match_history == {})

 lib_case.match_history = $set_utils:union(lib_case.match_history, $g.gencase:generate_history_entry(case));

 endif

 "initialize the entry located flag";

 previous_history_entry = 0;

 "check to see if the match_history contains a match for the current case";

 for entry in (lib_case.match_history)

 "only continue if an entry for the current store has not been located yet";

 $g:inform_admin("prev entry flag is ", previous_history_entry);

 if (previous_history_entry != 1)

 $g:inform_admin("Current library match history entry is ", entry[3]);

 $g:inform_admin("Looking for store ", case.owner_name);

 $command_utils:suspend_if_needed(0);

 "insert new history entry if player's store does not already have one in this library case";

 "if an enty is located set the flag";

 if (entry[2] == case.store.owner)

 $g:inform_admin("IN FLAG LOOP");

 previous_history_entry = 1;

 $g:inform_admin(" prev entry flag is now ", previous_history_entry);

 $g:inform(" Library Case history is already updated for this player so moving on");

 endif

 endif

 endfor

 "for cases in the library with no prior history entry for this case, add one";

 if (previous_history_entry != 1)

 match_info = $g.gencase:generate_history_entry(case);

 lib_case.match_history = $set_utils:union(lib_case.match_history, $g.gencase:generate_history_entry(case));

 $g:inform(" New Case Library history entry generated for this player");

 endif

 endif

endfor

"";

"Make a new entry in the case library if the case has never been seen before";

if (number_of_matches == 0)

 matched_library_case = $g.gencase:create_new_library_case(case);

 $g:inform(" First occurance of player case ", case, " spawns creation of a new library case ", matched_library_case);

endif

"update the library match history";

$g.gencase:update_library_match_history(case, matched_library_case);

$g.gencase:generate_history_entry

"";

"generates a case library history entry for the current case, pmr 12jun2001";

"";

"usage: ;$g.gencase:generate_history_entry(case)";

"";

case = args[1];

product_families = {};

"";

product_families = $g.gencase:compute_product_families(case);

case_info = {{$g.turn, case.store.owner, case.owner_name, product_families}};

return case_info;

$g.gencase:compute_product_families

"";

"determines the product families of products stocked by a player";

"pmr 12jun2001";

"";

"usage: ;$g.gencase:compute_product_families(case)";

"";

case = args[1];

product_families = {};

number_of_families = 0;

product_classes = children($g.product);

"";

"look at the player's products";

if (length(case.product_list) > 0)

 for this_product in (case.product_list)

 $command_utils:suspend_if_needed(0);

 ancestors = $object_utils:ancestors(this_product);

 " intersection, in this case, always a list of one object ";

 product_family = $set_utils:intersection(ancestors, product_classes);

 "see if the current product family matches any family in the list";

 product_families = setadd(product_families, product_family[1]);

 endfor

 return product_families;

else

 return {};

endif

$g.gencase:create_new_library_case

"";

"Creates a new unique library case";

"";

case = args[1];

"";

$g:inform_admin("Make a new case for the case library");

new_lib_case = $recycler:_create($g.case_library);

new_lib_case.name = "Library Case";

new_lib_case.aliases = {"Library Case", "lcase"};

new_lib_case.product_focus = case.product_focus;

new_lib_case.restock_plan = case.restock_plan;

new_lib_case.ad_cost = case.ad_cost;

new_lib_case.ad_target = case.ad_target;

new_lib_case.staff_level = case.staff_level;

new_lib_case.cash_reserves = case.cash_reserves;

new_lib_case.price_margin = case.price_margin;

new_lib_case.liability = case.liability;

"determine if the library case belongs in a prototype family";

$g.gencase:eval_prototype_similarity_and_sort(new_lib_case);

"";

"input the first history entry";

new_lib_case.match_history = $g.gencase:generate_history_entry(case);

return new_lib_case;

$g.gencase:update_library_match_history

"";

"updates library match history for a given active case";

"only adds entry to list if it is different from last entry on list";

"pmr, 10may2001";

"";

case = args[1];

lib_match = args[2];

"";

"if this is the first entry, add == 0 for 8jun01 bug, bms";

if (case.library_match_history == {} || case.library_match_history == 0)

 case.library_match_history = {{$g.turn, lib_match}};

else

 "if the last entry is different from the current lib_match";

 if (case.library_match_history[length(case.library_match_history)][2] != lib_match)

 "add the latest match to the end of the list";

 case.library_match_history = $set_utils:union(case.library_match_history, {{$g.turn, lib_match}});

 endif

endif

$g.gencase:eval_prototype_similarity_and_sort

"";

"evaluates the similarity of a case to each of the protocases and lists the results in ranked order in the prototype_similarity property of the case";

"pmr 28mar2001";

"";

"usage: ;$g.gencase:eval_prototype_similarity_and_sort(case obj)";

"";

current_case = args[1];

similarity_list = {};

"";

"compare current case to all protocases and determine similarity to each";

"";

"reset the tutor dialog";

if (parent(current_case) == $g.active_cases)

 current_case.prototype_tutor_dialog = {};

endif

"";

"look at each protocase";

for protocase in (children($g.protocase))

 "initialize similarity for each protocase";

 similarity = 0;

 $command_utils:suspend_if_needed(0);

 $g:inform_admin("Compare Protocase", protocase, " to ", current_case);

 similarity = $g.gencase:compute_similarity_value(current_case, protocase);

 "update the similarity list";

 similarity_list = $list_utils:append({{protocase, similarity}}, similarity_list);

endfor

"";

"sort the similarity list";

sorted_list = $g.gencase:sort_similarity_list(similarity_list);

$g:inform_admin(" the new prototype list is ", toliteral(sorted_list));

"add the new similarity list to the current case";

current_case.prototype_similarity = sorted_list;

"";

"update the prototype family";

$g.gencase:set_prototype_family(current_case);

$g.gencase:compute_similarity_value

"";

"evaluates the similarity value of one case compared to another and returns that value pmr 28mar2001";

"";

"usage: ;$g.gencase:compute_similarity_value(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

attribute_list = {"product_focus", "restock_plan", "ad_cost", "ad_target", "staff_level", "cash_reserves", "price_margin", "liability"};

match_weight = 10;

adjacent_weight = 5;

temp_list = {};

similarity = 0;

matched_attributes = {};

unmatched_attributes = {};

"";

"look at each attribute";

for attribute in (attribute_list)

 "initialize temp_similarity for each attribute";

 temp_similarity = 0;

 "skip attributes that are not evaluated as they add no weight to similarity";

 "copy attribute values so originals are not overwritten";

 source_attribute = source_case.(attribute);

 compare_attribute = compare_case.(attribute);

 "skip attributes that are not evaluated as they add no weight to similarity";

 if (source_attribute != "not evaluated")

 "make sure the attribute is in a list so the following code can handle it - protocases already are";

 if (parent(source_case) != $g.protocase)

 temp_list = {@temp_list, source_attribute};

 source_attribute = temp_list;

 temp_list = {};

 endif

 "look at each element in the source case for the current attribute as there may be more than one";

 for source_element in (source_attribute)

 "reset the compare attribute for each trip thru loop";

 compare_attribute = compare_case.(attribute);

 "make sure the attribute is in a list so the following code can handle it - protocases already are";

 if (parent(compare_case) != $g.protocase)

 temp_list = {@temp_list, compare_attribute};

 compare_attribute = temp_list;

 temp_list = {};

 endif

 "look at each element in the compare case for the current attribute as there may be more than one";

 for compare_element in (compare_attribute)

 "skip attributes that are not evaluated as they add no weight to similarity";

 if (compare_element != "not evaluated")

 "determine values of the attribute for the source case and compare case and compare them";

 compare_attribute_value = compare_element in $g.gencase.(attribute);

 source_attribute_value = source_element in $g.gencase.(attribute);

 difference = abs(source_attribute_value - compare_attribute_value);

 "apply a single weight based on result of closest match in case of multiple attributes in proto";

 if (difference == 0)

 temp_similarity = match_weight;

 matched_attributes = $set_utils:union(matched_attributes, {attribute});

 elseif (difference == 1)

 if (temp_similarity != match_weight)

 "comment out in an attempt to improve matching, pmr 26jun2001";

 "temp_similarity = adjacent_weight";

 endif

 else

 unmatched_attributes = $set_utils:union(unmatched_attributes, {attribute});

 endif

 endif

 endfor

 endfor

 "update the similarity measure with the new attribute data";

 similarity = similarity + temp_similarity;

 endif

endfor

"";

"add tutor dialog data if case is a protocase";

if (parent(compare_case) == $g.protocase && parent(source_case) == $g.active_cases)

 source_case.prototype_tutor_dialog = $set_utils:union(source_case.prototype_tutor_dialog, {{compare_case, matched_attributes, unmatched_attributes}});

endif

"";

return similarity;

$g.gencase:sort_similarity_list

"";

"sorts a similarity list pmr 28mar2001";

"";

"usage: ;$g.gencase:sort_similarity_list(list obj)";

"";

similarity_list = args[1];

"";

"generate key list to sort by";

key_list = $list_utils:slice(similarity_list, 2);

"sort the list";

similarity_list = $list_utils:sort_suspended(2, similarity_list, key_list);

"rank the list from hightest to lowest correlation values";

similarity_list = $list_utils:reverse_suspended(similarity_list);

return similarity_list;

$g.gencase:set_prototype_family

"determines if a case belongs in a prototype family";

"pmr 28mar2001";

"";

" usage: ;$g.gencase:set_prototype_family(case) ";

"";

case = args[1];

family_list = {};

"";

"update the prototype family for the case";

for entry in (case.prototype_similarity)

 if (entry == case.prototype_similarity[1])

 family_list = $list_utils:append({entry}, family_list);

 else

 if (entry[2] == case.prototype_similarity[1][2])

 family_list = $list_utils:append({entry}, family_list);

 endif

 endif

endfor

"now get the highest ranked protocase";

if (length(family_list) == 1)

 case.prototype_family[1] = family_list[1][1];

 case.prototype_family[2] = family_list[1][2];

elseif (length(family_list) >= 2)

 if (family_list[1][1] == #706 && family_list[1][2] < 60)

 case.prototype_family[1] = family_list[2][1];

 case.prototype_family[2] = family_list[2][2];

 elseif (family_list[2][1] == #706 && family_list[2][2] < 60)

 case.prototype_family[1] = family_list[1][1];

 case.prototype_family[2] = family_list[1][2];

 elseif (family_list[1][1] == #707)

 case.prototype_family[1] = family_list[2][1];

 case.prototype_family[2] = family_list[2][2];

 else

 case.prototype_family[1] = family_list[1][1];

 case.prototype_family[2] = family_list[1][2];

 endif

endif

"now set the strength measure";

if (case.prototype_family[2] >= 60)

 case.prototype_family[2] = "strong";

elseif (case.prototype_family[2] >= 40)

 case.prototype_family[2] = "weak";

else

 case.prototype_family[2] = "very weak";

endif

$g.gencase:eval_active_similarity_and_sort

"";

"evaluates the similarity of a case to each of the active cases and lists the";

"results in ranked order in the active_similarity property of the case";

"pmr 28mar2001";

"";

"usage: ;$g.gencase:eval_active_similarity_and_sort(case obj)";

"";

current_case = args[1];

similarity_list = {};

"";

"compare current case to all active cases and determine similarity to each";

"";

"look at each active case";

for active_case in (children($g.active_cases))

 "don't evaluate the current case against itself";

 if (active_case != current_case)

 "initialize similarity for each active case";

 similarity = 0;

 $command_utils:suspend_if_needed(0);

 $g:inform_admin("Compare Active Case", active_case, " to ", current_case);

 similarity = $g.gencase:compute_similarity_value(current_case, active_case);

 "update the similarity list";

 similarity_list = $list_utils:append({{active_case, similarity, 0, 0}}, similarity_list);

 endif

endfor

"";

"sort the similarity list";

sorted_list = $g.gencase:sort_similarity_list(similarity_list);

"add the new similarity list to the current case";

current_case.active_similarity = sorted_list;

$g.gencase:eval_concrete_active_similarity

"";

"evaluates the concrete similarity of a case to the active cases and lists the";

"results in ranked order in the active_similarity property of the case";

"pmr 10jun2001";

"";

"usage: ;$g.gencase:eval_concrete_active_similarity(case)";

"";

case = args[1];

concrete_similarity = {};

highest_abstract_match = case.active_similarity[1][2];

"";

"find concrete similarity for every entry in the active_similarity list";

for entry in (case.active_similarity)

 "only do concrete similarity on high similarity cases";

 if (entry[2] >= highest_abstract_match)

 $command_utils:suspend_if_needed(0);

 "initialize the temp list";

 temporary_list = {};

 $g:inform_admin("COMPUTE CONCRETE SIMILARITY for ", case, " versus ", entry[1]);

 "update the entry for the new similarity list with concrete similarity value";

 temporary_list = {entry[1], entry[2], $g.gencase:compute_concrete_similarity_value(case, entry[1]), 0};

 "update the entry for the new similarity list with overall similarity value";

 temporary_list[4] = temporary_list[2] + temporary_list[3];

 concrete_similarity = $set_utils:union(concrete_similarity, {temporary_list});

 else

 concrete_similarity = $set_utils:union(concrete_similarity, {{entry[1], entry[2], 0, 0}});

 endif

endfor

"";

"update the property on the case";

case.active_similarity = concrete_similarity;

$g.gencase:compute_concrete_similarity_value

"";

"evaluates the concrete similarity value of one case compared to another and returns that value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compute_concrete_similarity_value(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

source_case.active_tutor_dialog = {};

"";

"compare concrete attributes and build a similarity value";

similarity = similarity + $g.gencase:compare_number_of_product_families_stocked(source_case, compare_case);

similarity = similarity + $g.gencase:compare_product_families(source_case, compare_case);

similarity = similarity + $g.gencase:compare_number_of_products_stocked(source_case, compare_case);

similarity = similarity + $g.gencase:compare_average_markup(source_case, compare_case);

similarity = similarity + $g.gencase:compare_cash(source_case, compare_case);

similarity = similarity + $g.gencase:compare_player_age(source_case, compare_case);

similarity = similarity + $g.gencase:compare_items_sold_last_week(source_case, compare_case);

similarity = similarity + $g.gencase:compare_sales_lost_for_not_stocked(source_case, compare_case);

similarity = similarity + $g.gencase:compare_employee_type(source_case, compare_case);

similarity = similarity + $g.gencase:compare_ad_type(source_case, compare_case);

similarity = similarity + $g.gencase:compare_net(source_case, compare_case);

"";

return similarity;

$g.gencase:compare_number_of_product_families_stocked

"";

"compares number of product families stocked of two stores and returns a similarity value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compare_number_of_product_families_stocked(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

if (source_case.product_list != {} && compare_case.product_list != {})

 "determine similarity of number of product families";

 source_case_families = length($g.gencase:compute_product_families(source_case));

 compare_case_families = length($g.gencase:compute_product_families(compare_case));

 "determine the difference in product families that are stocked";

 difference = abs(source_case_families - compare_case_families);

 if (difference == 0)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"stock a similar number of product families (i.e. tools, pet supplies, etc.) ", source_case_families}});

 else

 if (difference > 0 && difference <= 2)

 similarity = similarity + weak_match;

 endif

 endif

 "";

 return similarity;

else

 return 0;

endif

$g.gencase:compare_product_families

"";

"compares products of two stores and returns a similarity value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compare_product_families(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

if (source_case.product_list != {} && compare_case.product_list != {})

 "determine similarity of matching product families";

 source_case_families = $g.gencase:compute_product_families(source_case);

 compare_case_families = $g.gencase:compute_product_families(compare_case);

 same_families = $set_utils:intersection(source_case_families, compare_case_families);

 product_intersection = length(same_families);

 percent_match = tofloat(product_intersection) / tofloat(length(source_case_families));

 if (percent_match >= 0.8)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"stock the same product types (i.e. tools, furniture, etc.)", product_intersection}});

 for entry in (same_families)

 endfor

 else

 if (percent_match < 0.8 && percent_match >= 0.5)

 similarity = similarity + weak_match;

 endif

 endif

 "";

 return similarity;

else

 return 0;

endif

$g.gencase:compare_number_of_products_stocked

"";

"compares the stock of two stores and returns a similarity value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compare_number_of_products_stocked(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"determine similarity of number of different items in stock";

source_case_items_stocked = length(source_case.product_list);

compare_case_items_stocked = length(compare_case.product_list);

difference = abs(source_case_items_stocked - compare_case_items_stocked);

if (difference <= 4)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"stock about the same nubmer of different product types", difference}});

else

 if (difference > 4 && difference <= 10)

 similarity = similarity + weak_match;

 endif

endif

"";

return similarity;

$g.gencase:compare_average_markup

"";

"compares the average markup of two stores and returns a similarity value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compare_average_markup(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"determine similarity of avg markup";

"compute source case avg markup";

source_case_markup = $g.gencase:compute_average_markup(source_case);

compare_case_markup = $g.gencase:compute_average_markup(compare_case);

difference = source_case_markup - compare_case_markup;

if (difference <= 0.03)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"markup your prices the same percentage", difference}});

else

 if (difference > 0.03 && difference <= 0.12)

 similarity = similarity + weak_match;

 endif

endif

"";

return similarity;

$g.gencase:compute_average_markup

"";

"evaluates the average markup of all shipments in a store and returns that value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compute_average_markup(case obj)";

"";

case = args[1];

running_markup = 0;

counter = 0;

average_markup = 0;

"";

"look at all the items in a store";

for item in (case.store.owner.owned_objects)

 "compute the markup for each shipment";

 if (parent(item) == $g.shipment && item.price != 0)

 item_markup = tofloat(item.paid) / tofloat(item.price);

 running_markup = tofloat(running_markup) + item_markup;

 counter = counter + 1;

 endif

endfor

"protect against stores with no shipments";

if (running_markup != 0)

 average_markup = running_markup / tofloat(counter);

else

 average_markup = tofloat(average_markup);

endif

return average_markup;

$g.gencase:compare_cash

"";

"compares cash of two stores and returns a similarity value";

"pmr 11jun2001";

"";

"usage: ;$g.gencase:compare_cash(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"determine similarity of cash on hand";

source_case_cash = source_case.company.cash;

compare_case_cash = compare_case.company.cash;

"determine the difference in cash on hand";

difference = abs(source_case_cash - compare_case_cash);

if (difference <= 2000)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"have about the same amount of cash", difference}});

else

 if (difference > 2000 && difference <= 8000)

 similarity = similarity + weak_match;

 endif

endif

"";

return similarity;

$g.gencase:compare_player_age

"";

"compares starting turn of two stores and returns a similarity value";

"pmr 12jun2001";

"";

"usage: ;$g.gencase:compare_player_age(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"determine similarity of matching player start turns";

source_case_start = source_case.store.owner.first_connect_time / 60 / 60 / 24 / 7;

compare_case_start = compare_case.store.owner.first_connect_time / 60 / 60 / 24 / 7;

"determine the difference in start times";

difference = abs(source_case_start - compare_case_start);

if (difference <= 3)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"have been in business for the same amount of time", difference}});

else

 if (difference > 3 && difference <= 10)

 similarity = similarity + weak_match;

 endif

endif

"";

return similarity;

$g.gencase:compare_items_sold_last_week

"";

"compares number of items sold last week of two stores and returns a similarity value";

"pmr 15jun2001";

"";

"usage: ;$g.gencase:compare_items_sold_last_week(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"check for invalid employees";

if (source_case.employee != 0 && compare_case.employee != 0)

 "determine similarity of items sold last week";

 "get the lists of items sold last week";

 source_case_sold = source_case.employee.lw_sold;

 compare_case_sold = compare_case.employee.lw_sold;

 "";

 "initialize and tally totals for each store";

 source_case_total_sold = 0;

 for entry in (source_case_sold)

 source_case_total_sold = source_case_total_sold + entry[1];

 endfor

 compare_case_total_sold = 0;

 for entry in (compare_case_sold)

 compare_case_total_sold = compare_case_total_sold + entry[1];

 endfor

 "";

 "determine the difference in items sold last week";

 difference = abs(source_case_total_sold - compare_case_total_sold);

 if (difference <= 3)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"sold about the same number of items last week", difference}});

 else

 if (difference > 3 && difference <= 10)

 similarity = similarity + weak_match;

 endif

 endif

 "";

 return similarity;

else

 return 0;

endif

$g.gencase:compare_sales_lost_for_not_stocked

"";

"compares number of sales lost due to items not stocked last week of two stores and returns a similarity value";

"pmr 15jun2001";

"";

"usage: ;$g.gencase:compare_sales_lost_for_not_stocked(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"check for invalid employees";

if (source_case.employee != 0 && compare_case.employee != 0)

 "determine similarity of not stocked items last week";

 "get the lists of items sold last week";

 source_case_not = source_case.employee.lw_not_stocked;

 compare_case_not = compare_case.employee.lw_not_stocked;

 "";

 "initialize and tally totals for each store";

 source_case_total_not = 0;

 for entry in (source_case_not)

 source_case_total_not = source_case_total_not + entry[1];

 endfor

 compare_case_total_not = 0;

 for entry in (compare_case_not)

 compare_case_total_not = compare_case_total_not + entry[1];

 endfor

 "";

 "determine the difference in items not stocked last week";

 difference = abs(source_case_total_not - compare_case_total_not);

 if (difference <= 3)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"lose the same amount of sales for items you do not stock", difference}});

 else

 if (difference > 3 && difference <= 10)

 similarity = similarity + weak_match;

 endif

 endif

 "";

 return similarity;

else

 return 0;

endif

$g.gencase:compare_employee_type

"";

"compares employee type of two stores and returns a similarity value";

"pmr 19jun2001";

"";

"usage: ;$g.gencase:compare_employee_type(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"check for invalid employees";

if (source_case.employee != 0 && compare_case.employee != 0)

 "determine similarity of employee type";

 "see if the employees are the same class";

 if (parent(source_case.employee) == parent(compare_case.employee))

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"have hired the same type of employee", parent(source_case.employee)}});

 else

 "see if the employees are the same high level class";

 if (source_case.employee.aliases[1][1] == compare_case.employee.aliases[1][1])

 similarity = similarity + weak_match;

 endif

 endif

 "";

 return similarity;

else

 return 0;

endif

$g.gencase:compare_ad_type

"";

"compares ad type of two stores and returns a similarity value";

"pmr 21jun2001";

"";

"usage: ;$g.gencase:compare_ad_type(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

matched_ads = {};

"";

"determine similarity of ad type";

source_case_ads = source_case.company.ads;

compare_case_ads = compare_case.company.ads;

"only evaluate if both have ads";

if (length(source_case_ads) != 0 && length(compare_case_ads) != 0)

 "compare each of the ads";

 for source_ad in (source_case_ads)

 for compare_ad in (compare_case_ads)

 if (source_ad == compare_ad)

 similarity = similarity + strong_match;

 matched_ads = setadd(matched_ads, source_ad);

 elseif (source_ad.size == compare_ad.size)

 similarity = similarity + weak_match;

 endif

 endfor

 endfor

endif

else

 return 0;

"";

source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"buy the same types of ads", matched_ads}});

return similarity;

$g.gencase:compare_net

"";

"compares net worth of two stores and returns a similarity value";

"pmr 7jul2001";

"";

"usage: ;$g.gencase:compare_net(source_case obj, compare_case obj)";

"";

source_case = args[1];

compare_case = args[2];

similarity = 0;

strong_match = 3;

weak_match = 1;

"";

"determine similarity of net worth";

source_case_net = source_case.company.net_worth;

compare_case_net = compare_case.company.net_worth;

"determine the difference in net worth";

difference = abs(source_case_net - compare_case_net);

if (difference <= 3000)

 similarity = similarity + strong_match;

 source_case.active_tutor_dialog = $set_utils:union(source_case.active_tutor_dialog, {{"have about the same net worth", difference}});

else

 if (difference > 4000 && difference <= 10000)

 similarity = similarity + weak_match;

 endif

endif

"";

return similarity;

$g.tutor_agent:schedule_tutor_visits

"";

"handles the scheduling of sending tutors to connected players, pmr 7jul2001";

"";

" usage: ;$g.tutor_agent:schedule_tutor_visits(player) ";

"";

player = args[1];

"";

"add the player to the need tutor list to wait for an active tutor to become free";

$g.tutor_agent.needs_tutor = setadd($g.tutor_agent.needs_tutor, player.store.case);

"";

"limit how many tutor processes are active at one time";

fork (0)

 "for this process, keep sending tutors until the needs_tutor list is empty";

 while (length($g.tutor_agent.needs_tutor) > 0)

 "if there are not already 3 tutors running, then start a new one (keep max to 4 at a time)";

 if ($g.tutor_agent.active_tutors <= 3)

 "take a snapshot of the needs tutor list for sorting in order to avoid problems";

 snapshot = $g.tutor_agent.needs_tutor;

 "get the player with the lowest net worth";

 for entry in (snapshot)

 if (entry == snapshot[1])

 worst_case = entry;

 elseif (entry.company.net_worth < worst_case.company.net_worth)

 worst_case = entry;

 endif

 endfor

 "remove the player from the needs tutor list";

 $g.tutor_agent.needs_tutor = setremove($g.tutor_agent.needs_tutor, worst_case);

 "send a tutor to the worst case";

 $g.tutor_agent:send_tutor(worst_case);

 "update the visit counter";

 worst_case.store.owner.tutor_visits_this_week = worst_case.store.owner.tutor_visits_this_week + 1;

 else

 "let the processes that are already forked handle the needs_tutor list";

 return;

 endif

 endwhile

endfork

$g.tutor_agent:send_tutor

"";

"builds a tutor dialog, pmr 28jun2001";

"";

" usage: ;$g.tutor_agent:send_tutor(case) ";

"";

case = args[1];

"";

"increment the active tutors";

$g.tutor_agent.active_tutors = $g.tutor_agent.active_tutors + 1;

"";

"try the tutor, basically, make sure the active tutor counter is decremented no matter what";

try

 "update the player's case";

 $g.gencase:update_active_case(case);

 "update the active similarity";

 $g.gencase:eval_active_similarity_and_sort(case);

 $g.gencase:eval_concrete_active_similarity(case);

 "";

 "check to see if player is best player";

 if (case.prototype_similarity[1][1] == #706 && case.prototype_similarity[1][2] == 80)

 "player is perfect, so send no message";

 else

 "create the tutor messages";

 greeting = {tostr("Greetings ", case.owner_name, "! I am the all singing, all dancing tutor and I have some advice for you...")};

 active_message = $g.tutor_agent:build_active_message(case);

 prototype_message = $g.tutor_agent:build_prototype_message(case);

 historical_message = $g.tutor_agent:build_historical_message(case);

 "";

 "send the player a tutor message";

 $g.interface_messages:show_note(case.store.owner, tostr("TUTOR MESSAGE FOR ", case.store.owner.name), @greeting, " ", @prototype_message, " ", @historical_message, " ", @active_message, " ", "And finally, don't forget to click the tutor button for some general guidelines on how to succeed. Good luck!");

 "update the last tutor visit";

 case.last_tutor_visit = {$g.turn, ctime()};

 endif

finally

 "decrement the number of active tutors";

 $g.tutor_agent.active_tutors = $g.tutor_agent.active_tutors - 1;

 "";

endtry

$g.tutor_agent:build_active_message

"creates a tutor message based on the store that is most similar to the player";

"pmr, 25jun2001";

"";

" usage ;$g.tutor_agent:build_active_message(case) ";

case = args[1];

counter = 0;

message = {};

best = {0, 0};

traits = {};

"";

"find the most common active store";

for entry in (case.active_similarity)

 if (entry[4] > best[2])

 best = {entry[1], entry[4]};

 endif

endfor

"";

"build the list of similar traits";

for item in (case.active_tutor_dialog)

 traits = $set_utils:union(traits, {item[1]});

endfor

"assemble the message";

message = $set_utils:union(message, {tostr("If I were to pick a store that you are most similar to, it would be ", best[1].store.name, ", which is located in ", best[1].store.hood.name, ".")});

if (length(case.active_tutor_dialog) == 0)

elseif (length(case.active_tutor_dialog) == 1)

 message = $set_utils:union(message, {tostr("The thing you have most in common with ", best[1].store.name, " is that you both:")});

else

 message = $set_utils:union(message, {tostr("The things you have most in common with ", best[1].store.name, " are that you both:")});

endif

"";

for trait in (traits)

 message = $set_utils:union(message, {tostr(" - ", trait)});

endfor

message = $set_utils:union(message, {tostr("Keep in mind that this may be good or bad, depending on how ", best[1].store.name, " is performing.")});

return message;

$g.tutor_agent:build_prototype_message

"creates a tutor message based on the protocase that is most similar to the player";

"pmr, 25jun2001";

"";

" usage ;$g.tutor_agent:build_prototype_message(case) ";

"";

case = args[1];

message = {};

"";

message = $set_utils:union(message, {tostr("You ", case.prototype_family[2], "ly remind me of a player who was ", case.prototype_family[1].aliases[2], ".")});

message = $set_utils:union(message, {"In general this means that:"});

message = $set_utils:union(message, {tostr(" - ", case.prototype_family[1].general_tutor_message)});

message = $set_utils:union(message, {"My advice for you is to:"});

"";

"find the appropriate entry in the prototype tutor dialog";

for entry in (case.prototype_tutor_dialog)

 if (entry[1] == case.prototype_family[1])

 "build custom messages based on all of the attributes that are similar to the protocase";

 for attribute in (entry[2])

 if (attribute == "product_focus")

 if (case.(attribute) == $g.gencase.product_focus[2])

 message = $set_utils:union(message, {" - stay focused on the types of products you are selling... good job!"});

 elseif (case.(attribute) == $g.gencase.product_focus[3])

 message = $set_utils:union(message, {" - don't change to any new types right now"});

 elseif (case.(attribute) == $g.gencase.product_focus[4])

 message = $set_utils:union(message, {" - stick with selling the same types of products... don't change between different types"});

 endif

 endif

 if (attribute == "restock_plan")

 if (case.(attribute) == $g.gencase.restock_plan[2])

 message = $set_utils:union(message, {" - stock more quantity of the products you sell"});

 elseif (case.(attribute) == $g.gencase.restock_plan[3])

 message = $set_utils:union(message, {" - keep stocking the same quantity products you sell... good job!"});

 elseif (case.(attribute) == $g.gencase.restock_plan[4])

 message = $set_utils:union(message, {" - stock less quantity of the products you sell"});

 endif

 endif

 if (attribute == "ad_cost")

 if (case.(attribute) == $g.gencase.ad_cost[2])

 message = $set_utils:union(message, {" - spend more of your income on ads"});

 elseif (case.(attribute) == $g.gencase.ad_cost[3])

 message = $set_utils:union(message, {" - keep spending the same amount of your income on ads... good job!"});

 elseif (case.(attribute) == $g.gencase.ad_cost[4])

 message = $set_utils:union(message, {" - spend less of your income on ads"});

 endif

 endif

 if (attribute == "ad_target")

 if (case.(attribute) == $g.gencase.ad_target[2])

 message = $set_utils:union(message, {" - use market research to properly target your ads for the consumers you need to reach"});

 elseif (case.(attribute) == $g.gencase.ad_target[3])

 message = $set_utils:union(message, {" - use market research to improve the targeting of your ads and reach the right consumer groups"});

 elseif (case.(attribute) == $g.gencase.ad_target[4])

 message = $set_utils:union(message, {" - keep targeting your ads to reach the right consumer groups... good job!"});

 endif

 endif

 if (attribute == "staff_level")

 if (case.(attribute) == $g.gencase.staff_level[2])

 message = $set_utils:union(message, {" - hire a more skilled employee to meet the needs of your customers"});

 elseif (case.(attribute) == $g.gencase.staff_level[3])

 message = $set_utils:union(message, {" - keep your current employee... good job!"});

 elseif (case.(attribute) == $g.gencase.staff_level[4])

 message = $set_utils:union(message, {" - hire an employee with less skill and stop wasting your money on the one you have"});

 endif

 endif

 if (attribute == "cash_reserves")

 if (case.(attribute) == $g.gencase.cash_reserves[2])

 message = $set_utils:union(message, {" - try to keep more cash on hand"});

 elseif (case.(attribute) == $g.gencase.cash_reserves[3])

 message = $set_utils:union(message, {" - keep the same amount of cash on hand... good job!"});

 elseif (case.(attribute) == $g.gencase.cash_reserves[4])

 message = $set_utils:union(message, {" - try to spend more of your cash to improve your situation"});

 endif

 endif

 if (attribute == "price_margin")

 if (case.(attribute) == $g.gencase.price_margin[2])

 message = $set_utils:union(message, {" - keep your prices competitive... good job!"});

 elseif (case.(attribute) == $g.gencase.price_margin[3])

 message = $set_utils:union(message, {" - improve your prices as they are only marginally competitive"});

 elseif (case.(attribute) == $g.gencase.price_margin[4])

 message = $set_utils:union(message, {" - lower your prices to get competitive"});

 endif

 endif

 if (attribute == "liability")

 if (case.(attribute) == $g.gencase.liability[2])

 message = $set_utils:union(message, {" - keep your liability at an acceptable level... good job!"});

 elseif (case.(attribute) == $g.gencase.liability[3])

 message = $set_utils:union(message, {" - consider reducing your liability"});

 elseif (case.(attribute) == $g.gencase.liability[4])

 message = $set_utils:union(message, {" - reduce your liability as soon as you can"});

 endif

 endif

 endfor

 return message;

 endif

endfor

$g.tutor_agent:build_historical_message

"creates a message based on the player's history of matches against the case library";

"pmr, 26jun2001";

"";

" usage ;$g.tutor_agent:build_historical_message(case) ";

"";

case = args[1];

message = {};

history = {};

"";

"initialize previous entry";

previous_entry = {0, 0, 0, 0};

"build the history from the library match history";

for entry in (case.library_match_history)

 temp = {entry[1], entry[2].prototype_family[1].aliases[2], entry[2].prototype_family[2], 0};

 "only add to history if different than previous entry";

 "if the previous entry does not have the same prototype family and match strength, add it to history";

 if (temp[2] != previous_entry[2] || temp[3] != previous_entry[3])

 history = $set_utils:union(history, {temp});

 previous_entry = temp;

 endif

endfor

"";

"reverse the history list for processing";

rev_history = $list_utils:reverse(history);

"initialize the counter";

counter = 0;

"reset the history";

history = {};

"set the length of time player was at each state for the history";

for entry in (rev_history)

 counter = counter + 1;

 temp = entry;

 if (counter == 1)

 temp[4] = $g.turn - entry[1];

 else

 temp[4] = previous_entry[1] - entry[1];

 endif

 previous_entry = temp;

 history = $set_utils:union(history, {temp});

endfor

"";

"put together the tutor message";

message = $set_utils:union(message, {tostr("Going back in time from present to distant past, it seems that you have been:")});

for entry in (history)

 message = $set_utils:union(message, {tostr(" - ", entry[2], " ", entry[3], "ly for ", entry[4], " weeks")});

endfor

"";

"if the player is doing good, commend them";

if (history[1][2] == "one of the best players")

 message = $set_utils:union(message, {"You are doing a great job! Keep it up"});

elseif (length(history) > 1 && history[2][2] == "one of the best players")

 message = $set_utils:union(message, {"You were doing a great job! What happened???"});

endif

return message;

APPENDIX B: CASE LIBRARY CONSTRUCTION INSTRUCTIONS

In order to complete your assignment, you will need to know the following general information (please SAVE THIS EMAIL for reference throughout the assignment):

- DollarBay is located at http://oit.cs.ndsu.nodak.edu/~mooadmin/DollarBay . Click on "Launch DollarBay" link to start the java client and get a login prompt. There are additional links on this page that lead you to the directions on how to play the game. You are on your own to figure out the basics of how to play the game, and I suspect you will have no problem doing so.

- DollarBay can be slow at times when the server is performing significant computations.... please be patient. It can sometimes take a few seconds before a dialog window will pop up, and you may notice a significant delay the first time you log in while your store is being built. This is normal.

- The game will be played from 27-April-2001 at noon to 4-May-2001 at midnight. During this time period, you will be expected to log on several times every 24 hours. It will probably take you a significant amount of time to play at first as you get set up and figure out how to play to your specific instruction set (see below), and less time as you progress and get used to the game. The most important thing for you to do is to keep your store on track with the detailed instructions provided for you below - and you should log in as often as you must to do so.

- Every action you perform while playing is being logged for later analysis and to verify that you have completed your assignment as directed. Please do your best to follow your specific instruction set every time you play (see below). It is important that you play consistently and regularly to complete this assignment effectively and properly build the case library.

- Please take a few minutes to customize your player appearance, store appearance, etc in order to make your player unique. While you are playing the game... be social. Go to other stores and see how your fellow players are doing and try to have a good time :)

- Keep track of any bugs you encounter in the game. You will be asked to report these at the end of your assignment. If you come across a bug that you feel is significant enough to affect your game playing during this assignment, please let me know immediately by emailing me specific details

- When you login for the first time, you will see the Retailer Window (graphical) pop up as well as a dialog box the lets you know that your store is being created, and when it is finished. You may start playing only after you see the message stating that your store is finished and your graphical window has completely filled in. You may want to click on the door to your backroom and make sure it is there and then log out and log back on to make sure everything is working correctly before you begin playing.

- There appears to be a bug in the Market Research.... anyone who is asked to target their advertising will have to do the best they can by choosing products to sell based on the demographics of your neighborhood (ie, who lives there). You can then look at the types of ads available, and try to reasonably choose a proper one for your target audience (for example, don't stock expensive items and buy an ad on a classical radio station if your target audience is college students). I am going to try to fix the Market Research before noon tomorrow and make it available, and if I am unable to do so, please disregard this bullet point and use the Research module for your targeting.

- Please do not discuss your specific instructions with any of your classmates.

The following instructions are specific for you:

- Your login and password are listed below. Use only this login and password for this assignment
login owner54

passwd yqUVU

- stock many types of expensive items

- stock a very high of each item

- buy a lot of advertising

- don't try to target your ads

- hire the most expensive employees

- keep no cash on hand

- keep your price markup very high

- borrow lots of money from the bank

Thank you in advance for your assistance and good luck...

Patrick Regan

APPENDIX C: CASE LIBRARY CONSTRUCTION MATCH RESULTS

;#112:get_player_lib_matches("owner11");

owner11 at turn 1228 matched lib case #1491 and proto family barking up the wrong tree for 1 turns.

owner11 at turn 1229 matched lib case #1021 and proto family overcautious for 1 turns.

owner11 at turn 1230 matched lib case #2906 and proto family overcautious for 2 turns.

owner11 at turn 1232 matched lib case #1664 and proto family barking up the wrong tree for 1 turns.

owner11 at turn 1233 matched lib case #4624 and proto family overcautious for 38 turns.

owner11 at turn 1271 matched lib case #4657 and proto family barking up the wrong tree for 8 turns.

owner11 at turn 1279 matched lib case #1188 and proto family one of the best players for 2 turns.

owner11 at turn 1281 matched lib case #4661 and proto family barking up the wrong tree for 1 turns.

SUMMARY oc:41 os:0 bp:2 buwt:11 fs:0

=> 0

;#112:get_player_lib_matches("owner12");

owner12 at turn 1227 matched lib case #1680 and proto family barking up the wrong tree for 1 turns.

owner12 at turn 1228 matched lib case #4717 and proto family barking up the wrong tree for 1 turns.

owner12 at turn 1229 matched lib case #4624 and proto family overcautious for 3 turns.

owner12 at turn 1232 matched lib case #4857 and proto family overcautious for 1 turns.

owner12 at turn 1233 matched lib case #1664 and proto family barking up the wrong tree for 14 turns.

owner12 at turn 1247 matched lib case #4657 and proto family barking up the wrong tree for 2 turns.

owner12 at turn 1249 matched lib case #1188 and proto family one of the best players for 4 turns.

owner12 at turn 1253 matched lib case #1991 and proto family barking up the wrong tree for 2 turns.

owner12 at turn 1255 matched lib case #4661 and proto family barking up the wrong tree for 27 turns.

SUMMARY oc:4 os:0 bp:4 buwt:47 fs:0

=> 0

;#112:get_player_lib_matches("owner13");

owner13 at turn 1227 matched lib case #3615 and proto family barking up the wrong tree for 1 turns.

owner13 at turn 1228 matched lib case #1664 and proto family barking up the wrong tree for 1 turns.

owner13 at turn 1229 matched lib case #4857 and proto family overcautious for 4 turns.

owner13 at turn 1233 matched lib case #4717 and proto family barking up the wrong tree for 1 turns.

owner13 at turn 1234 matched lib case #3370 and proto family barking up the wrong tree for 5 turns.

owner13 at turn 1239 matched lib case #4657 and proto family barking up the wrong tree for 5 turns.

owner13 at turn 1244 matched lib case #1188 and proto family one of the best players for 4 turns.

owner13 at turn 1248 matched lib case #1991 and proto family barking up the wrong tree for 2 turns.

owner13 at turn 1250 matched lib case #4661 and proto family barking up the wrong tree for 32 turns.

SUMMARY oc:4 os:0 bp:4 buwt:47 fs:0

=> 0

;#112:get_player_lib_matches("owner14");

owner14 at turn 1228 matched lib case #3757 and proto family overcautious for 1 turns.

owner14 at turn 1229 matched lib case #832 and proto family overcautious for 3 turns.

owner14 at turn 1232 matched lib case #4717 and proto family barking up the wrong tree for 15 turns.

owner14 at turn 1247 matched lib case #2642 and proto family one of the best players for 4 turns.

owner14 at turn 1251 matched lib case #1008 and proto family barking up the wrong tree for 2 turns.

owner14 at turn 1253 matched lib case #1234 and proto family barking up the wrong tree for 29 turns.

SUMMARY oc:4 os:0 bp:4 buwt:46 fs:0

=> 0

;#112:get_player_lib_matches("owner15");

owner15 at turn 1227 matched lib case #1491 and proto family barking up the wrong tree for 1 turns.

owner15 at turn 1228 matched lib case #1410 and proto family barking up the wrong tree for 1 turns.

owner15 at turn 1229 matched lib case #4657 and proto family barking up the wrong tree for 1 turns.

owner15 at turn 1230 matched lib case #4514 and proto family overcautious for 26 turns.

owner15 at turn 1256 matched lib case #2765 and proto family barking up the wrong tree for 26 turns.

SUMMARY oc:26 os:0 bp:0 buwt:29 fs:0

=> 0

;#112:get_player_lib_matches("owner21");

owner21 at turn 1227 matched lib case #3664 and proto family overcautious for 5 turns.

owner21 at turn 1232 matched lib case #4042 and proto family barking up the wrong tree for 3 turns.

owner21 at turn 1235 matched lib case #1609 and proto family barking up the wrong tree for 10 turns.

owner21 at turn 1245 matched lib case #903 and proto family barking up the wrong tree for 37 turns.

SUMMARY oc:5 os:0 bp:0 buwt:50 fs:0

=> 0

;#112:get_player_lib_matches("owner23");

owner23 at turn 1227 matched lib case #3214 and proto family a foolish squanderer for 0 turns.

owner23 at turn 1227 matched lib case #4474 and proto family a foolish squanderer for 1 turns.

owner23 at turn 1228 matched lib case #4042 and proto family barking up the wrong tree for 9 turns.

owner23 at turn 1237 matched lib case #1117 and proto family barking up the wrong tree for 1 turns.

owner23 at turn 1238 matched lib case #2639 and proto family barking up the wrong tree for 44 turns.

SUMMARY oc:0 os:0 bp:0 buwt:54 fs:1

=> 0

;#112:get_player_lib_matches("owner24");

owner24 at turn 1227 matched lib case #4187 and proto family a foolish squanderer for 2 turns.

owner24 at turn 1229 matched lib case #4042 and proto family barking up the wrong tree for 1 turns.

owner24 at turn 1230 matched lib case #2116 and proto family overspending for 2 turns.

owner24 at turn 1232 matched lib case #2688 and proto family overspending for 1 turns.

owner24 at turn 1233 matched lib case #903 and proto family barking up the wrong tree for 49 turns.

SUMMARY oc:0 os:3 bp:0 buwt:50 fs:2

=> 0

;#112:get_player_lib_matches("owner25");

owner25 at turn 1228 matched lib case #3757 and proto family overcautious for 2 turns.

owner25 at turn 1230 matched lib case #1124 and proto family barking up the wrong tree for 2 turns.

owner25 at turn 1232 matched lib case #2124 and proto family barking up the wrong tree for 0 turns.

owner25 at turn 1232 matched lib case #3899 and proto family barking up the wrong tree for 5 turns.

owner25 at turn 1237 matched lib case #4042 and proto family barking up the wrong tree for 45 turns.

SUMMARY oc:2 os:0 bp:0 buwt:52 fs:0

=> 0

;#112:get_player_lib_matches("owner26");

owner26 at turn 1228 matched lib case #3757 and proto family overcautious for 2 turns.

owner26 at turn 1230 matched lib case #2961 and proto family barking up the wrong tree for 2 turns.

owner26 at turn 1232 matched lib case #4072 and proto family barking up the wrong tree for 1 turns.

owner26 at turn 1233 matched lib case #4042 and proto family barking up the wrong tree for 4 turns.

owner26 at turn 1237 matched lib case #1609 and proto family barking up the wrong tree for 10 turns.

owner26 at turn 1247 matched lib case #1117 and proto family barking up the wrong tree for 35 turns.

SUMMARY oc:2 os:0 bp:0 buwt:52 fs:0

=> 0

;#112:get_player_lib_matches("owner31");

SUMMARY oc:0 os:0 bp:0 buwt:0 fs:0

=> 0

;#112:get_player_lib_matches("owner32");

owner32 at turn 1227 matched lib case #1491 and proto family barking up the wrong tree for 1 turns.

owner32 at turn 1228 matched lib case #1664 and proto family barking up the wrong tree for 1 turns.

owner32 at turn 1229 matched lib case #1865 and proto family barking up the wrong tree for 1 turns.

owner32 at turn 1230 matched lib case #1410 and proto family barking up the wrong tree for 2 turns.

owner32 at turn 1232 matched lib case #1117 and proto family barking up the wrong tree for 1 turns.

owner32 at turn 1233 matched lib case #4042 and proto family barking up the wrong tree for 1 turns.

owner32 at turn 1234 matched lib case #2116 and proto family overspending for 4 turns.

owner32 at turn 1238 matched lib case #2368 and proto family overspending for 44 turns.

SUMMARY oc:0 os:48 bp:0 buwt:7 fs:0

=> 0

;#112:get_player_lib_matches("owner33");

owner33 at turn 1230 matched lib case #2007 and proto family barking up the wrong tree for 2 turns.

owner33 at turn 1232 matched lib case #2961 and proto family barking up the wrong tree for 1 turns.

owner33 at turn 1233 matched lib case #1675 and proto family barking up the wrong tree for 2 turns.

owner33 at turn 1235 matched lib case #2592 and proto family barking up the wrong tree for 10 turns.

owner33 at turn 1245 matched lib case #3370 and proto family barking up the wrong tree for 4 turns.

owner33 at turn 1249 matched lib case #3134 and proto family barking up the wrong tree for 2 turns.

owner33 at turn 1251 matched lib case #2648 and proto family barking up the wrong tree for 5 turns.

owner33 at turn 1256 matched lib case #1234 and proto family barking up the wrong tree for 26 turns.

SUMMARY oc:0 os:0 bp:0 buwt:52 fs:0

=> 0

;#112:get_player_lib_matches("owner34");

owner34 at turn 1227 matched lib case #1206 and proto family barking up the wrong tree for 1 turns.

owner34 at turn 1228 matched lib case #4427 and proto family barking up the wrong tree for 1 turns.

owner34 at turn 1229 matched lib case #4618 and proto family barking up the wrong tree for 3 turns.

owner34 at turn 1232 matched lib case #4042 and proto family barking up the wrong tree for 15 turns.

owner34 at turn 1247 matched lib case #1609 and proto family barking up the wrong tree for 35 turns.

SUMMARY oc:0 os:0 bp:0 buwt:55 fs:0

=> 0

;#112:get_player_lib_matches("owner35");

owner35 at turn 1230 matched lib case #2109 and proto family overspending for 2 turns.

owner35 at turn 1232 matched lib case #1863 and proto family overspending for 1 turns.

owner35 at turn 1233 matched lib case #2688 and proto family overspending for 2 turns.

owner35 at turn 1235 matched lib case #2595 and proto family overspending for 1 turns.

owner35 at turn 1236 matched lib case #2597 and proto family overspending for 46 turns.

SUMMARY oc:0 os:52 bp:0 buwt:0 fs:0

=> 0

;#112:get_player_lib_matches("owner41");

owner41 at turn 1230 matched lib case #1101 and proto family barking up the wrong tree for 2 turns.

owner41 at turn 1232 matched lib case #1124 and proto family barking up the wrong tree for 1 turns.

owner41 at turn 1233 matched lib case #1410 and proto family barking up the wrong tree for 49 turns.

SUMMARY oc:0 os:0 bp:0 buwt:52 fs:0

=> 0

;#112:get_player_lib_matches("owner42");

owner42 at turn 1227 matched lib case #1599 and proto family barking up the wrong tree for 0 turns.

owner42 at turn 1227 matched lib case #1493 and proto family barking up the wrong tree for 1 turns.

owner42 at turn 1228 matched lib case #2765 and proto family barking up the wrong tree for 2 turns.

owner42 at turn 1230 matched lib case #1410 and proto family barking up the wrong tree for 52 turns.

SUMMARY oc:0 os:0 bp:0 buwt:55 fs:0

=> 0

;#112:get_player_lib_matches("owner43");

owner43 at turn 1232 matched lib case #1599 and proto family barking up the wrong tree for 1 turns.

owner43 at turn 1233 matched lib case #1493 and proto family barking up the wrong tree for 1 turns.

owner43 at turn 1234 matched lib case #1410 and proto family barking up the wrong tree for 27 turns.

owner43 at turn 1261 matched lib case #1865 and proto family barking up the wrong tree for 21 turns.

SUMMARY oc:0 os:0 bp:0 buwt:50 fs:0

=> 0

;#112:get_player_lib_matches("owner44");

owner44 at turn 1227 matched lib case #3664 and proto family overcautious for 1 turns.

owner44 at turn 1228 matched lib case #1493 and proto family barking up the wrong tree for 1 turns.

owner44 at turn 1229 matched lib case #1410 and proto family barking up the wrong tree for 4 turns.

owner44 at turn 1233 matched lib case #1865 and proto family barking up the wrong tree for 49 turns.

SUMMARY oc:1 os:0 bp:0 buwt:54 fs:0

=> 0

;#112:get_player_lib_matches("owner45");

owner45 at turn 1227 matched lib case #3378 and proto family barking up the wrong tree for 1 turns.

owner45 at turn 1228 matched lib case #1865 and proto family barking up the wrong tree for 4 turns.

owner45 at turn 1232 matched lib case #1410 and proto family barking up the wrong tree for 50 turns.

SUMMARY oc:0 os:0 bp:0 buwt:55 fs:0

=> 0

;#112:get_player_lib_matches("owner51");

owner51 at turn 1233 matched lib case #3757 and proto family overcautious for 1 turns.

owner51 at turn 1234 matched lib case #2586 and proto family barking up the wrong tree for 1 turns.

owner51 at turn 1235 matched lib case #4540 and proto family barking up the wrong tree for 1 turns.

owner51 at turn 1236 matched lib case #4514 and proto family overcautious for 5 turns.

owner51 at turn 1241 matched lib case #2641 and proto family barking up the wrong tree for 9 turns.

owner51 at turn 1250 matched lib case #2647 and proto family overspending for 1 turns.

owner51 at turn 1251 matched lib case #2688 and proto family overspending for 7 turns.

owner51 at turn 1258 matched lib case #2650 and proto family overspending for 24 turns.

SUMMARY oc:6 os:32 bp:0 buwt:11 fs:0

=> 0

;#112:get_player_lib_matches("owner52");

owner52 at turn 1227 matched lib case #1196 and proto family barking up the wrong tree for 1 turns.

owner52 at turn 1228 matched lib case #1153 and proto family barking up the wrong tree for 1 turns.

owner52 at turn 1229 matched lib case #903 and proto family barking up the wrong tree for 3 turns.

owner52 at turn 1232 matched lib case #4312 and proto family barking up the wrong tree for 1 turns.

owner52 at turn 1233 matched lib case #1667 and proto family barking up the wrong tree for 49 turns.

SUMMARY oc:0 os:0 bp:0 buwt:55 fs:0

=> 0

;#112:get_player_lib_matches("owner53");

owner53 at turn 1227 matched lib case #2911 and proto family barking up the wrong tree for 1 turns.

owner53 at turn 1228 matched lib case #1153 and proto family barking up the wrong tree for 1 turns.

owner53 at turn 1229 matched lib case #4042 and proto family barking up the wrong tree for 3 turns.

owner53 at turn 1232 matched lib case #1117 and proto family barking up the wrong tree for 1 turns.

owner53 at turn 1233 matched lib case #2116 and proto family overspending for 23 turns.

owner53 at turn 1256 matched lib case #2688 and proto family overspending for 26 turns.

SUMMARY oc:0 os:49 bp:0 buwt:6 fs:0

=> 0

APPENDIX D: CASE LIBRARY CONSTRUCTION PLAYER NARRATIVES

Owner 11

I played Dollar Bay in the spring of 2001. I was the “Drooling Store Owner”, otherwise known as owner11. Since I was in Copper Harbor, which is home to many college students and university employees I decided to sell products that were relatively cheap. The marketing I conducted told me that furniture and pet supplies were in high demand so I sold collar leashes and inflatachairs. I located the collar leashes at the Dog and Cat Warehouse for $5 individually and $3 for orders of 20 or more. I kept my costs down and frequently ordered 5 at a time. The manufacturer suggested retail price (MSRP) was $8 but I sold them for $7 each. The inflatachairs were purchased from the Living Room Warehouse also in quantities of 5. The cost for 5 or more was $70 each or $80 individually. The MSRP on these chairs was $100 but I decided to sell them for $90 in order to make them a good deal.

My store had one low function employee named Geoffrey who was a student that worked for $200 a week. When I opened my store, I immediately placed two ads in the college paper. A quarter page was the cheapest at $99. I tried using humor, “Take our stuff, please” and featured free parking. My other ad said, “If you don't shop with us, you're paying way too much” and featured low prices.

I felt that customer flow was fairly constant and I had to reorder quite often in order to keep up with sales. I did notice that many customers were looking for pet related supplies, so I would have benefited by carrying a more extensive product line. Due to my low markup and limited product selection, I wasn’t making enough money to cover my expenses each week. I didn’t borrow any money from the bank, yet I was slowly depleting my cash in the store and would have gone under. If I had to do it over again, I would have started with more products in the areas marketing had indicated were strong and then monitored customers’ requests. I would have then purchased many of those products and made sure I had a price just below any of my competition. I would try to choose products that others weren’t selling and ones that I could make a good profit on.

Owner 12

I played Dollar Bay, using the owner12, in the spring of 2001. I was assigned a store in Copper Harbor and tried selling umbrellas and basic lamps. I would order five lamps and five umbrellas in one-time installments. I would only have a one-dollar mark up on my products. Once I ran out of an item, I would go back to the warehouses and order five more of the same product. I hired the cheapest employee I could find, his name was Garrett and I paid him two hundred dollars a week. After about five weeks, I fired Garrett and hired someone else. I placed and ad in a college newspaper in hopes to increase sales. For the first couple of weeks, I had a steady flow of customers coming in buying all my stock. I would have to place orders three or four times a week. After that, my customer traffic decreased more than half. When I last check, I haven't had any customers come in the sixth week.

My strategy wasn't working too well. It was going down hill from the start. If I were to play again, I would do a little market research and find out what product is being most asked for. If I wasn't selling that product, I would switch to that one and mark up the prices by at least half. I would also hire a better employee and maybe a little bit more advertising.

Owner 13

In the spring of 2001, I played Dollar Bay using the name owner13. I had a nice store in golden valley, where I took up selling rubber rafts and pre-assembled 10 piece oak entertainment centers. I normally ordered a few of each of them, and then marked them up $10 or $20, that way all the customers came to me for my low prices. My employee was the cheapest one around. I hired him because I didn't think that an expensive employee would do any better. I advertised to the people most likely to buy my products, but I always bought the cheapest ad available. I always kept a lot of money on hand, so that I could buy anything that I wanted, and never go to the bank. When I started the game, I had quite a few customers, because there weren't many players in the game. As the game progressed, I had fewer customers, so I lowered my prices more, and a few more came.

By the time I quit the game, I was losing a lot of money. My strategy did not work very well. I had a lot of money in my hand, but my prices were not high enough to even cover my expenses. Since I only had two items, I had to reject most of my customers’ requests, and when they did buy, I never made any money. If I were to try again, I would probably barrow some money right away, and begin buying a lot of some product group, such as furniture. I would buy a better employee, and spend more money on advertising. Finally, I would mark my prices up high enough to actually make a profit.

Owner 14

I played the Dollar Bay game in the spring of 2001. I was given a store in Pyrite City. After some contemplation, I decided that it would be worth trying the following strategy: I would keep 2 items on hand, and sell them with a low markup. This way, I could sell a lot of a few items, and, even though my markup was low, I would develop a reputation for having the best prices in Dollar Bay, and would thus sell more than enough to make money.

Next, I put a lot of time into deciding what products to sell. No one was living Pyrite City at the time, so I went to the nearest area with good size population. That led me to Iron Mountain. There, I checked out the marketing information about shoppers in the city. The bar charts for product demand showed that pet supplies were in great demand. Since I wanted to carry few items and keep my markup low, pet supplies seemed like a good idea. So, I went to the Dog and Cat warehouse, since there was a very good chance that a lot of the potential shoppers I might get would be looking for either dog or cat food.

There, I found exactly what I wanted; cheap dog food and cheap cat food. I didn't want to tie up a lot of my money in merchandise, so I decided to keep a low stock on hand, keep a close watch on the stock, and purchase more as needed. So, I bought 5 bags of each, and marked them up $7 (bought for $45, charged $52). Next, I had to decide on an employee. I knew I couldn't afford to pay much for an employee, since I wasn't going to make much on a single pet food sale. So I hired the cheapest employee I could find. How hard could it really be to sell cheap cat and dog food anyway? Besides, with my low markup, I thought the products would sell themselves.

The last thing I need was to advertise. I again wanted to avoid spending a lot of money, so I checked out advertising costs. I settled on a 1/8-page ad in the newspapers Leisure Section. It seemed to me that there would be a lot of pet owners that read the leisure section. My ad stated that I had Low Prices. It cost me $525.People came quite frequently at first.

I had no problem selling out of my original stock, so I quickly replenished my supply of cat and dog food. This time I bought 7 bags of each. This was going to be fun; my customers were lined up to buy from my store, and I had just started the game. I kept a very close eye on my products. I couldn't afford to lose sales, so I wanted to always have at least 2 bags of cat and dog food on hand at all times.

Right about this time the customers stopped coming. I had 5 bags of cat food and 7 bags of dog food for what seemed like forever. I waited and waited. No one would even walk into my store. I got desperate. I was loosing money fast, and was falling way behind in the game. So I began to incrementally drop the price on my items. I figured sooner or later I would undercut the price of anyone who might be selling the same items I was. I dropped the price again. And again. And still, no one bothered to come into my store. On the last day, I priced my items at $46 (one measly dollar over my cost). I was desperate to sell again, no matter how much I would make. Still, nobody came. I had no choice but to accept the outcome of my strategy; I was a failure, and it happened so fast that I couldn't recover.

Would I have done anything differently? Yes! I would have carried more items. I still would have kept my markup low, and I still would have bought practical items (like dog and cat food). But I would have advertised a lot more. I would have hired a better employee (I suspect my hiring of the cheapest employee I could find factored into my immediate failure more than I at first realized). I would have gone in debt a lot to get my store up and running, instead of taking a wait-and-see approach. I think I failed in part because I was too tentative and too afraid to go into debt.

Owner 15

I played owner15 on the spring of 2001. My store was placed in Lead Junction. I decided to only sell two types of things: nightstands, and dressers. I got the cheapest employee possible, which I'm not sure made a difference, but I did notice that he didn't take returns from customers. I decided to advertise in the newspaper with the cheapest ad in the leisure section - highlighting low prices. This was somewhat expensive from my standpoint, but before I advertised no one even came into my store; afterward my store got a decent amount of traffic. For a while I also tried an ad in a college newspaper, but it didn't seem to increase how much I sold, so I just got rid of it.

My markup was really low, and I stored low quantities of everything. Not having a lot of stock tended to hurt me at times, since I would end up selling out of something and losing sales. Having a low markup means that although people were very willing to buy my stuff, I never made much money on it. The only two real costs I had were rent and advertising, but as I never really made much money, I tended to have a hard time just paying for the advertising. One week when hardly anyone came to my store, I lost money.

I think I could have done much better mainly by selling everything closer to the recommended selling price (perhaps $5-$10 less). If you can find the right place to advertise, that is very important, but I found that the cost means that you should probably watch very carefully how much you gain in profit compared to how much the ads cost. I think stocking higher quantities of items would be smart too, so you won't run out of things to sell, and you also tend to get discounts which means you make more money off of each sale.

Owner 21

When I moved into Dollar Bay I realized that I had way too many mouths to feed and so I decided to open a business under the alias 'owner 21'. My store was located in Golden Valley, which is the wealthiest section of Dollar Bay.

I had decided to stock many different types of items, from seasonal, to furniture, to the strange and exotic. I purchased as many of these items as I could afford with my available cash and the proceeded to draw a 1-year $15,000 loan from the Main Branch of the Dollar Bay Bank. The extra cash came in very handy in purchasing more items. After purchasing all of these items I proceeded to mark them up very high. An example was marking up an economical basic dresser to almost 100% over what I paid for it. I purchased the item for $120 and sold them at $225, I tried to maintain this level of markup throughout my store but unfortunately I was unable to markup all items.

The adage that 'Good Help is hard to find' was not true in this case. I hired Kylie for $540/week and he proceeded to do a great job working with inventory and customers and maintaining lists of items that customers wanted.

I decided to get the word out in Dollar Bay that owner 21's store was the place to be seen. Unfortunately the 6 ads that I placed in both radio and the newspaper did not seem to increase the volume of customers. Initially I received very few customers and this did not change until well into the simulation. My state-of-my-store address that I gave to Kylie was that we were going to file chapter 11, I just couldn't get enough customers to buy items at the high markups that I had set them at. Granted very few customers asked for something I did not carry, but even when I did carry it, they would explain that it was too expensive. I believe I could have made ends meet if I didn't use such a high sales price on my items. Another thing I would have changed was the hiring of the employee, granted Kylie did a great job, but in speaking with other owners after the simulation was complete I was surprised to hear that an employee that was paid about 1/2 as much also did a competent job.

Owner 23

I was owner23 in the Iron Mountain neighborhood in the spring of 2001. I had a desire to be the best merchant in Dollar Bay, so I spared no expense. I wanted to stock a very high quantity of many different types of items. In order to draw customers into my store, I purchased thousands of dollars of radio and newspaper advertisements and targeted them at the customers in my neighborhood. I also felt customer service was important, so I hired the most expensive employee. In order to finance all of this, I immediately borrowed as much money as I could from the bank, and kept very little cash on hand. Finally, since there would be a lot of customers seeing my advertisements and coming into the store, I marked up prices very high to make the largest profit possible.

With this "expensive Wal-Mart" type strategy, I was immediately very broke since I had spent all my cash on product and advertising. But, as soon as the ads got out, customers immediately began streaming in. Many prospective customers were turned off by the relatively high prices, but there were enough interested customers to keep me going well. In subsequent weeks, the sales were so good that I was able to continually purchase more, new products in high volume. As I became to learn of my customers needs, I was able to customize my orders to what they wanted.

When I stopped playing, sales were still very good. I attribute this solely to the high volume of advertising. Essentially, my high price markup is justified in that it pays for the advertising, which is used to draw in more customers. I anticipate that this strategy would continue to be successful as long as the markup was not restrictively high. My only recommendation is to not permanently scare customers away with a ridiculously high price markup. And the only way to justify the markup you do use is lots of advertising.

Owner 24

I played Dollar Bay, using the name owner24, in the spring of 2001. The store that I was assigned was located in the Golden Valley Neighborhood. I did my Market Research and decided to get into the rock tool business, selling various things like rock polishers and rock hammers. I wanted to make some profit fast, so I marked up my items about 25% above cost and really put some money into advertising.

I purchased a lot of advertisements, pertaining to a lot of different demographics. Hoping to draw business to my store. This worked very well, at first, then things started to go down hill. Customers complained about the high prices and started looking elsewhere. Even with people buying items I couldn't turn enough profit to keep up with my advertising. So I went to the bank and got a quick loan.

I had some high prices employees to help my along the way, they helped me by making short reports on customer activity. But that activity turned into almost nothing when I ran out of money and could get no more loans from the bank. Looking back on it all, I would have bought a few less ads and would have researched other businesses to see what they were selling their products for. Then I could set my prices, to be comparative. I would try to stay out of trouble with the bank, so I could get loans when I needed them. It's too bad I went under, owner24's was a pretty fun place to purchase geological tools.

Owner 25

I played Dollar Bay as owner25 in a store in Silver River. My store stocked a very wide variety of products, some from all categories, and a high quantity of each item. I kept a high markup on each item, usually 100-200% of its wholesale price. I also borrowed lots of money from the bank, $15,000, and spent as much of it as I could. I consistently had 2-4 advertisements running at a time, and spent any remaining money on keeping a large inventory. I tried to target ads to different groups of customers, since I stocked such a variety of products, and would normally advertise the high quality and good service offered at my store. I also tried to get the most expensive employee available. However, only employees in the first two tiers were available.

This strategy seemed to work well, as my store was usually very busy, with several customers in it at once. Because I had such a variety of products, I most often had the products my customers were looking for. If I noticed an item I didn't stock was being asked for, I would usually start stocking that item once I had money to purchase it. Because I had a high markup, my products were often too expensive for the customers. However, with the number of customers that I had, and the amount of money made for a sale, seemed to make up for this. My store was consistently ranked as one of the most profitable stores.

After playing Dollar Bay for quite some time, I noticed that my store was not doing quite as well as it had been. While there still seemed to be many customers visiting my store, more of them were complaining about the high prices. I would still make some sales for products that were not sold by my competitors, but would lose the sale for products that were stocked at other nearby stores. My strategy could probably be improved by trying to keep my prices competitive with other stores. I also do not think that an expensive employee is necessary. Getting as many customers to my store as possible seemed to be the key to my strategy.

Owner 26

I played Dollar Bay, using the name Owner26, in the Spring of 2001. In mystore, I sold a great variety of items, from dog books to exotic animals to power tools. I bought a HUGE supply of each of the items I stocked, even going so far as to buy a wholesaler's entire stock of a certain item. I gave each of my items a very large markup, hoping for extreme profits on every sale. I hired the most expensive employee, bought expensive but well targeted advertising, and borrowed as much as I could from the bank to reinvest in my store.

Due in large part to my well targeted advertising, I experienced a large volume of customers. Unfortunately, most of them didn't end up buying, due to my expensive prices. My expensive employee was a good investment, I feel, due to the fantastic reports he generated, enabling me to stock what my customers wanted and to target my advertising most effectively. All in all, my business strategy was a failure. I found myself strapped for cash, unable to buy new types of inventory. I was on my way to bankruptcy. If I could change a few things, I would have charged more reasonable prices, and bought less of each item, so that I had the cash to change inventories as needed.

Owner 32

I started to play DollarBay in the spring of 2001. I was owner32, and I chose to set up shop in Pyrite City. It's a town without any people, so I had to get people to come into my store from neighboring communities.

I tried to keep my number of products low, so I only kept about 6-10 different products in my store at any time. I tried to stock pet supplies, such as dog food, and cat food. I also tried selling furniture such as beds and lamps. I stocked these types of products because of the demographics/marketing info I got for the surrounding communities. I kept my mark-up very low on the products, usually ranging from 15-25%. I had a few different employees, ranging from two-retired, middle class people to a younger middle class person. My sales didn't seem to improve/decline with any of them. They were the cheapest employees I could find.

To start off with, I advertised in the College Paper, with a full page. It was pretty cheap. For the first few days, I had a huge volume of customers coming in, buying any of my products and asking for more. I kept things pretty much the same, and then all the sudden people stopped coming into my store. This is when I tried switching employees to a younger person, and advertising on the Popular Radio station and a real newspaper. Nothing changed; I kept losing money because no one was coming into my store.

At the beginning, I thought my approach to sales was a great one. Apparently, when no one lives in your city, and other people are selling the stuff you are for just as cheap, things don't go well. At the end, things were going down hill very fast. I couldn't seem to get people to come back into my store.

To do better, I probably wouldn't have went to a city without any people. I also would've raised prices a bit more to be able to afford advertising and my employee. Other than that, I can't see how to improve my approach. There were just other people out there selling more things that people wanted, for the same price I could offer.

Owner 34

In the spring of 2001, I played Dollar Bay under the name of owner34. My store was located in Iron Mountain and I decided to sell a wide variety of pets and pet supplies. Pets included reptiles, monkeys, dogs, cats, and fish. For pet supplies, I was selling aquariums, dog houses, high quality food and vitamins, cheap food and vitamins, and other accessories such as collars and leashes, only to name a couple. I also offered my customers informational books on the animals I was selling, as well as children’s books.

The first time I ordered my products, I left the price set at the manufacturer's suggested retail price. I had a lot of customers, but most of them came in for food and vitamins. As a result, I kept a lot in stock of these items and decided to raise my prices to make more of a profit. Despite the increase in price, customers still came into my store to purchase these items.

For employees, I started out with the cheapest one at $200 per week. He was very polite and did what was required of him. Then I noticed his bad attitude and decided to fire him and hire a new one. This time, I ended up hiring a $450 per week salesman. He was also very polite and did what was expected.

The day my store opened, I put an advertisement in the newspaper. It was a family advertisement in the leisure section, which took up an eighth of a page. Shoppers responded very well to it so I continued advertising on a daily basis. I even did a radio ad one time but it didn't seem to have any effect.

When my store first opened, I had an abundance of customers. There was always one or more in my store. It wasn't until other stores began opening that I had started to lose business. It got to be so bad that eventually no one was coming into my store. I decided to drop my prices drastically in hopes of gaining some of my customers back. This did not work. My money was dropping so to prevent myself from going broke, I decided to pull out all of my advertisements. By this time, my money was so low I couldn't really do anything.

At this point, I'm not really sure as to what I could have done to improve the situation. I advertised based on Market Research in my area and that didn't help. I also used Market Research to compare my prices to those of competitors. I had the lowest prices but still no customers. One thing I noticed while doing Market Research, is that there was a group of shoppers in Iron Mountain interested in furniture. I wish that when I had been overflowing with customers I would have expanded my business and offered furniture as well. Maybe then I would have been able to keep some of my customers. Towards the end, I decided that is would not be feasible to expand with no source of income.

Owner 35

I was playing the Dollar Bay game under the name owner35 in the Spring of 2001. I logged on, customized my store in Pyrite City, and hired an employee to help. The only employees available were in the lower price range, so I picked one with a good resume of sales and friendly service. It was a middle-aged retired women.

My goal was to sell the most popular product in the neighborhood at a cheap price. Unfortunately, my own neighborhood was weakly populated, so I targeted the surrounding neighborhoods. I found the biggest seller was exotic animals and accessories. I stocked my store and send out some ads advertising for economy and fun in every section of the paper and on every radio station.

When the customers started coming in, I started to notice certain trends and had to adjust my stock. Most of my customers were single, middle to low class workers who were looking for pet food and vitamins. I quickly sold my exotic animals and bought the products my customers were looking for and adjusted the price for no more than a 5 or 10-dollar markup, to keep it affordable. I only figured I needed about 20% of my cash on hand, so I stocked as much as I could. I also bought more ads on college and popular radio and sold back the ones on the classical station and in the business section of the paper.

The first day, business was excellent. Once the first few customers came and saw my cheap pet food, I had a rush of people in and out of my store, most of them buying items. The next day, however, I saw no customers, and my money supply was dwindling. I sold back some more stock - only things I had too many of - and cancelled the most expensive radio ads. I still wanted to attract attention to myself, so I added a few ads in the newspaper, and dropped the price. I hired a new employee that was more fitting to the customer base I got the day before.

The third day, I also had no business - the beat cop was the only person I saw - and needed a loan to pay for all the ads and my employee. I tried marking down my products more and selling a few more things back. This trend continued and by the time I tried to sell back my stock and try a different product, I was out of money. I spent too much on ads and was over-stocking the merchandise. Before I knew it, I was out of money and in debt up to my ears. I became desperate and tried to gamble my remaining cash, but to no avail.

I feel I could've easily stayed in business if I wasn't so over-excited about the amount of business I had the first day. I bought the items the customers were looking for, but I bought too many of them. I also didn't spend my advertising dollars very well. At first, I bought ads to target the customers I had, but I spent too much on them. By then end, I was selling stock back at a loss and had no income. The bottom line is, I went too crazy the first day, spending money, getting ads - when business would have been just fine if I would've been more careful about my money supply.

Owner 41

I played Dollar Bay, using the name owner41, in the spring of 2001. I was assigned a store in the Dollar Bay neighborhood and I decided to try selling a wide variety of products, and to always stock less than four of each item. I then decided to price each item very high, usually twice its value. I hired the cheapest employee I could and decided to waste none of my money on advertising. I borrowed $15,000 from the bank to buy products for my store and then paid it all back a few days later.

I tried to keep low amounts of cash on hand, but was unsuccessful because most of the products where fairly cheep to buy, and I always bought only a few of each item. I had many customers come to my store each week, and at first I sold most of my products. As the weeks went on, I still had many customers but sold fewer items because my prices where so high. When I stopped playing business seemed to be doing well and I was still making a profit. I was continuing to sell about 6 items a week.

I think my strategy was working pretty well at first because, I had a wide variety of products, and I had a high price mark up. However, I had a few items from the start that never did sell and I should have reduced their prices. At the end I ended up with a lot of inventory because sales slowed down. To improve my situation I probably would have reduced my prices a little on the item that were not selling, but otherwise, I think I would have continued with my current strategy.

Owner 42

My task was to buy many items at low quantities and to mark up the price a lot. I also was to take out a lot of loans and keep very little money on hand and not to advertise at all. I also bought the cheapest labor. At the beginning of the simulation I decided to buy one of everything and double the markup on each item. This proved to be difficult because none of the other players had bought much yet so I was the only store holding some of these items. They were selling faster than I could mark them up. I marked up what I could and decided to call it a day. The next day there were many more players and there was a bigger selection of merchandise. It looked like my prices didn’t seem to cut it anymore. So I bought what I could and logged out. The next couple of day’s traffic seemed to dwindle. I noticed that I was only selling rare items that no one else was offering and when those ran out I wasn’t selling anything at all. The last three days (human days), so my employee said, I hadn’t sold a single thing. I guess everyone else undercut me. I ended up with $8,000 profit and I don’t understand how that happened. I’m thinking it was because of the first day.

Owner 43

I played Dollar Bay using the name owner43, and I don’t remember what neighborhood I was located in because I really never needed to know. For my store, I thought a good way of making money for selling products in a big town was for me to sell as many different products as possible. For a big town, if I were to sell many items, people would only have to shop at my store to get the things they needed. I also figured that I would raise the prices for my products because I carried many different items and wouldn’t make shoppers go to many places to do their shopping.

I got my shop, and went out and started purchasing products to sell in my store. I bought many different items ranging from furniture to pets to hardware tools. When purchasing these products, I figured that I would only need a few of them in stock, because I was to have so many different products, why keep many of the same thing. After stocking my store full of things to buy, I needed to find an employee. I figured that I would hire the cheapest person available because my store would have so many good items, that they would sell themselves. It cost my 200 dollars for the employee and I just randomly picked one.

For pricing my products, it was hard to figure out what percent I should mark my products up to. So going through my inventory, I decided to double the price of my products, and on some items that I thought were rare, or valuable, I tripled the price.

The store opens to the public and my first day was a GOOD one. After one day of business, I had over 400 customers. Every time I was at the store, there were at least 3 people in there. I was doing very well, in that first day I made over $4,000 profit. I was very happy and my employee did very well at handling customer questions, and with my questions. Not once did I see him do something wrong with the customers. He provided me with detailed reports of what customers wanted that we didn’t have, how many customers came in, and what we sold that day.

Managing the store was more difficult than I thought it would be. Reordering products was the biggest problem for me. I had so many different products to order, it was difficult to see how many I had, what I was out of, and the mostly, if I was out of a product, what price did I have for the product. So I went out and bought more of what I needed, and some new things that people wanted but I did not have. I think I accidentally changed the prices of a lot of items, because I could not remember what price I had set them to. Some higher, and some lower.

For the second day, business started to slow down dramatically. The second day I only had 150 customers, and I only made a little over $1,000. Customers would come in and not buy anything because of the prices. I didn’t understand this, because on my first day, low-income people were purchasing products that I tripled the price on, and high-income people wouldn’t buy anything that was marked up only 20%. On the second day hardly anyone would buy anything. Another thing I noticed was that my employee started to not do his job correctly. He was telling customers the wrong information about what we had. It might have been caused by the amount of products we had. So I fired him and got another $200 employee. This one wasn’t good from the beginning, but I dealt with it. After the 2nd day, my store wouldn’t sell ANYTHING. Customers wouldn’t come in and my profit went to $0.00 for that day. From then on, barely anyone would come in and barely anyone would buy anything.

I think I could of done a lot better had I not had so many products in my store. Marking them up 2 times and sometimes 3 times proved to be good, but me changing the prices after I forgot what I had them at, I think, was the problem for me losing customers.

Owner 44

When I was a player in Dollar Bay, I went by the name “owner44”. I played for about one week during spring 2001 and owned a store located in the Silver River district. I sold a wide variety of goods – everything from poodles to rock polishers. Although I bought a wide variety, I limited myself to only buying a few of each item. As for pricing, my store was on the more expensive side. On average I had at least a one hundred percent markup on all of my goods and even went higher than that on cheaper items. In selecting an employee, I decided to go with Sommer. He was one of the cheapest employees, however, he did the job. I never made use of advertising, but I did borrow money several times from the local bank. The total amount that I ended borrowing was $32,000, some of which I still owe.

Immediately after I opened my store we had a lot of customers coming through. Although some would leave after they decided things were too expensive, many did buy. I was kept pretty busy keeping up my stock and with repricing all of these items. I did notice that as time went on, my volume of customers did decrease. Fortunately, I was still able to sell quite a bit.

My strategy seemed to be for the most part, a successful one. Although I did borrow a substantial amount from the bank, I always was able to repay it. Plus, the borrowed money allowed me to expand my inventory, which greatly helped in servicing customers. By having such an extensive inventory, customers were usually able to find what they were looking for. Although prices were expensive, customers were buying and I was able to make a huge profit off of those sales. Overall, my store turned out to be pretty successful. The one thing that I think I could have done differently would be to downsize my inventory a little bit. Many items did not seem to be in demand where I was located, and for this reason it was a waste to have them. If I were to do this again, I would definitely take into consideration who exactly my target customers are and what they are looking to buy.

Owner 45

I played Dollar Bay, under the name of owner 45, in Spring of 2001. I was assigned a store in the Silver River neighborhood. I decided to sell a wide range of products from all of the warehouses. I kept over 80 different products in stock most of the time. I bought very few of each product, only between one and five of each. I tried to purchase the products back as I sold them. I marked each product up above the MSRP to somewhere between 150% and 200% of the price I paid, depending on what the MSRP was. I priced most products closer to 150% than 200%.

To keep overhead low, I hired the cheapest employee. The first one I hired didn't provide very useful reports, so I hired another cheapest employee and that one seemed to provide better reports. I also did no advertising. At the very beginning of the game, I took out a large loan from the bank. I used this money to purchase more items. At all times I tried to keep less than $1,000 in liquid assets.

At first, business was good. I was seeing over 100 customers per week, and quite a few were buying. I suspect this happened, since I was one of the first stores to open. After the first two to three weeks, business went away. I was lucky to see two customers per week. Towards the end of the run (last two or three weeks) business picked up again to around 100 customers per week. Before this happened, I was down to $40 in liquid assets. This new rush of customers helped revive my business.

I think the strategy is an okay one. I think it works well, when there aren't many other stores and not all the products are covered. In the beginning (and perhaps at the end when people weren't watching as closely and were starting to run out of products), my huge selection was very advantageous. The high markup worked on most products that were cheaper to begin with (less than $100 bulk rate), but not quite as well on the expensive ones. However, I was able to sell a primate of some sort at a high markup. Since I don't see where an owner gains interest on cash, I think it makes complete sense to keep very little cash on hand, until a large stock is gathered up. However, I do think that a well laid out advertising campaign would have helped quite a bit, especially during the slow weeks, when I only had one customer come in. Other owners' ad campaign must have been taking my business away, since I had no ads.

When the simulation ended, I was starting to make an up swing, due to higher customer volume. Which may or may not have been due to the fact, the other stores didn't have any merchandise. Since I started out and ended with high customer volume, but had a large drought in the middle weeks, I cannot predict how the store would have done in the long run. With the increase in cash, I probably could have mounted an ad campaign and tried to keep my customer volume high. A lower mark up on the high priced items ($600+) would have probably helped those move quicker as well. It would seem to me that a very large selection would mean it is tougher for someone to compete directly against you, due to the large number of products. If they have you beat in one product, you probably have them beat in another. A large variety of products is difficult to manager however.

Owner 51

I played Dollar Bay, using login name owner51, for the CS426 class of Spring 2001. I was assigned a store in Copper Bay. I was assigned to sell high end products so I chose beds, chairs, and couches. I bought the highest end stuff I could find at the warehouses. For which I traveled to the Furniture Warehouse and the other Furniture store in Dollar Bay.

I only started playing on Thursday of the week, so didn't have much time but logged on as much as possible to play the game, I bought the most expensive employee for a salary of 350. I bought 5 advertisements in both radio and newspaper, boasting quality and good service. I bought the highest end possible furniture and about 5-10 of each and sold them and fairly high markup.

I borrowed 15000 from the bank, which I believe was the highest possible. In the that time I only sold one item and made 500 dollars, I spent a lot on advertising and merchandise for my store, and last I checked I had 820 cash on hand, and was in debt for 16000, that was last Friday night. I believe this strategy seemed to work ok, except not many people came into the store, and one complained about the prices. If I were to have done it differently I would have sold them cheaper and had cheaper selection of products to sell, which may have given me more business. I also believe this strategy seemed to work very well, if I had played it longer I may have seen more customers in the game.

Owner 52

In the spring of 2001, I as owner52 played Dollar Bay. I started by store by hiring the best employee I could find regardless of price. I then sought out only the highest quality goods from the different wholesalers around Dollar Bay and bought a large quantity of each. Shortly I ran out of money, so I need to visit the bank to obtain more. Since all my goods were luxury items I put a high markup on each about 200%. To get customers in the store I bought 4, 20 minute adds on the radio stations in town, plus two full-page newspaper ads. The ads brought in quite a lot of customers, but because of the high prices no sales were made for the first couple of weeks. To counteract this I lowered the markups to 150%. With the new lower prices I still only made one sale in two weeks. I then lowered prices once again to about 100% markup. This was successful in creating sales, but not fast enough to pay for the advertising and the loan. If I were to continue with this strategy I imagine I would remain steady neither hitting bankruptcy nor making good money. To improve this I could have cut down on advertising stocked less of the high priced items, and maybe lower prices slightly more.

Owner 53

I played Dollar Bay, using the name of owner53, in the spring of 2001. I was assigned a store in the Blue Pine neighborhood. I began selling expensive furniture and later switched to reptiles and exotic animals. I chose to continue selling some of the furniture that I still had in stock rather than returning all of it at a loss. Before the switch I sold some Black Labs, a few doghouses and a few collar and leashes for the dogs on the side. I initially tried to begin with the RockHeads warehouse but was continually unsuccessful with my orders and so decided on the furniture warehouses. My ordering went directly through the warehouses and I was only able to order in frequencies of once rather than multiple times. I used the markup that is the default amount of markup – I did accidentally drop some prices and raised another product’s price automatically but later raised the lowered ones back up. I found one employee, Dorsey who I kept throughout the life of my store. He seemed to be a bargain at the second highest level of wage having had a hard time finding him. With customer complaints of high prices for my stock I thought that the prices might have a high markup to begin with and so didn’t raise the prices of the furniture.

I began with buying three different types of advertising right away after taking out a $10,000 bank loan. I bought the highest level of advertising on the popular and the classical radio stations and also some newspaper advertising in the leisure section at the maximum amount of time. I believe I tried to utilize relaxation and high quality. I was only able to take out the one $10,000 loan due to never being able to pay it back in full. Unable to afford more advertising after the 3 media styles I initially purchased I believe that my store sales went down quite a bit believing that advertising would have helped with the sale of the exotic animals and reptiles. The store did a lot of business in the beginning with many sales of high priced umbrellas.

I believe my strategy was okay with the minus $10,832 I ended with and the $6.00 in cash in the register. If I had succeeded in taking out more bank loans I could have advertised more this would possibly have raised store sales. When I did the sales forecasting I was expected to plummet out of business, which I think would have ended up being accurate. I believe more advertising in the end would have improved my situation for increasing the amount of people entering the store and the number of purchases made.

APPENDIX D: STUDENT TOURNAMENT DOCUMENTATION

To:
Parents and Guardians of the Governor School Participants

From:
Patrick Regan

Date:
June 27th , 2001

Re:
Permission for your child/legal ward to participate in a research study

I am currently a student in the Computer Science Department at North Dakota State University and am working towards my masters’ degree. In order to complete my thesis, I need to gather data while people are playing in the DollarBay virtual environment. In order to meet this requirement, I would like to ask your child or legal ward to partake in a study. One of the main reasons I would like your child or legal ward to partake in the study is that they are already playing DollarBay for fun and are familiar with the environment. Being that these students are minors, I am seeking your approval for this.

Please review the attached permission slips and have your child or legal ward return a signed copy when they return to school on July 9th. If you require any additional information the best way to reach me is via e-mail at Patrick_Regan@ndsu.nodak.edu, or you can try my office at (701) 231-8721. Thank you for your assistance with this matter.

Parental Consent Form

Consent to Participate in Research

“Case-Based Reasoning in a Retail Environment"

Your child/legal ward is invited to participate in a research study being conducted by

Patrick Regan and Brian Slator, Ph.D., Department of Computer Science

Basis for Participant Selection: The students being asked to participate in this study are currently attending the Governor’s School during the summer of 2001.

Purpose of the Study: We are conducting a research project on educational computer games. Results of this study will help us to learn more about how to design and build effective computer systems for educational purposes.

Explanation of Procedures: There are five parts to this study. Total time commitment for your child/legal ward is estimated to be approximately 6 hours.

1)
Completion of a computer literacy survey (5-10 minutes).

2)
Completion of a pre-test questionnaire (10-15 minutes).

3)
It will take approximately 30-40 minutes/day for 2 weeks to use the software.

4)
Completion of a post-test questionnaire (10-15 minutes).

5)
Completion of a final questionnaire (5-10 minutes).

Potential Risks and Discomforts: There are no risks or discomforts for your child/legal ward involved in this study.

Potential Benefits: Your child/legal ward may find the computer tasks to be interesting and educationally valuable.

Assurance of Confidentiality: Any information we obtain from this study, including your child’s/legal ward’s identity, will be held confidential. Their identity will not be revealed in the results of this study. Data and records created by this project are the property of the University and the investigator. You may have access to information collected on or about your child/legal ward by making a written request to the principal investigator. This right of access extends only to information collected on or about your child/legal ward and not to information collected on or about others participating in the project.

Voluntary Participation & Withdrawal from the Study: Your child’s/legal ward’s participation is voluntary. His/her decision whether or not to participate will not influence their present or future relationship with the University. If they decide to participate, they are free to withdraw consent and to discontinue participation at any time.

Offer to Answer Questions: If you have any questions about this project, you can contact Patrick Regan at (701) 231-8721 or Dr. Brian Slator, at (701) 231-6124. If you have questions about the rights of human research subjects, you should contact the NDSU IRB office, (701) 231-8908.

Consent statement: You are voluntarily making a decision whether or not to allow your child/legal ward to participate. Your signature indicates that, having read the information provided above, you have decided to permit your child/legal ward to participate. You will be given a copy of this consent form to keep.

Signature

Date

Relation to Participant

Youth Assent Form

Consent to Participate in Research

“Case-Based Reasoning in a Retail Environment"

You are invited to participate in a research study being conducted by

Patrick Regan and Brian Slator, Ph.D., Department of Computer Science

Basis for Participant Selection: The students being asked to participate in this study are currently attending the Governor’s School during the summer of 2001.

Purpose of the Study: We are conducting a research project on educational computer games. Results of this study will help us to learn more about how to design and build effective computer systems for educational purposes.

Explanation of Procedures: There are five parts to this study. Total time commitment for your child/legal ward is estimated to be approximately 6 hours.

1)
Completion of a computer literacy survey (5-10 minutes).

2)
Completion of a pre-test questionnaire (10-15 minutes).

3)
It will take approximately 30-40 minutes/day for 2 weeks to use the software.

4)
Completion of a post-test questionnaire (10-15 minutes).

5)
Completion of a final questionnaire (5-10 minutes).

Potential Risks and Discomforts: There are no risk are discomforts involved in this study.

Potential Benefits: You may find the computer tasks to be interesting and educationally valuable.

Assurance of Confidentiality: Any information we obtain from this study, including your identity, will be held confidential. Your identity will not be revealed in the results of this study. Data and records created by this project are the property of the University and the investigator. You may have access to information collected on or about you by making a written request to the principal investigator. This right of access extends only to information collected on or about you and not to information collected on or about others participating in the project.

Voluntary Participation & Withdrawal from the Study: Your participation is voluntary. Your decision whether or not to participate will not influence your present or future relationship with the University. If you decide to participate you are free to withdraw your consent and to discontinue participation at any time.

Offer to Answer Questions: If you have any questions about this project, you can contact Patrick Regan at (701) 231-8721 or Dr. Brian Slator, at (701) 231-6124. If you have questions about the rights of human research subjects, you should contact the NDSU IRB office, (701) 231-8908.

Consent statement: This research project has been explained to you and you understand what is going to be done, and why. You have talked to your parents about this project and you have decided that you would like to be a part of it. You understand that your parents [or legal guardian(s)] will be given a copy of this form to keep.

Signature of Youth

Date

Investigator’s Signature

Date

PAGE
vii

